Relaxation times in the ASEP model using a DMRG method

被引:41
作者
Nagy, Z
Appert, C
Santen, L
机构
[1] Univ Paris 06, Lab Phys Stat, F-75231 Paris 05, France
[2] Univ Paris 07, Lab Phys Stat, F-75231 Paris, France
[3] Univ Saarland, D-66041 Saarbrucken, Germany
关键词
asymmetric exclusion process; density-matrix renormalization; dynamical exponents;
D O I
10.1023/A:1020462531383
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We compute the largest relaxation times for the totally asymmetric exclusion process (TASEP) with open boundary conditions with a DMRG method. This allows us to reach much larger system sizes than in previous numerical studies. We are then able to show that the phenomenological theory of the domain wall indeed predicts correctly the largest relaxation time for large systems. Besides, we can obtain results even when the domain wall approach breaks down, and show that the KPZ dynamical exponent z = 3/2 is recovered in the whole maximal current phase.
引用
收藏
页码:623 / 639
页数:17
相关论文
共 28 条
[1]  
BELITZKY V, IN PRESS
[2]   Spectra of non-Hermitian quantum spin chains describing boundary induced phase transitions [J].
Bilstein, U ;
Wehefritz, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (14) :4925-4938
[3]   Density matrix renormalization group and reaction-diffusion processes [J].
Carlon, E ;
Henkel, M ;
Schollwöck, U .
EUROPEAN PHYSICAL JOURNAL B, 1999, 12 (01) :99-114
[4]   Critical properties of the reaction-diffusion model 2A→3A, 2A→0 -: art. no. 036101 [J].
Carlon, E ;
Henkel, M ;
Schollwöck, U .
PHYSICAL REVIEW E, 2001, 63 (03) :361011-361010
[5]   Statistical physics of vehicular traffic and some related systems [J].
Chowdhury, D ;
Santen, L ;
Schadschneider, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 329 (4-6) :199-329
[6]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[7]   Free energy functional for nonequilibrium systems: An exactly solvable case [J].
Derrida, B ;
Lebowitz, JL ;
Speer, ER .
PHYSICAL REVIEW LETTERS, 2001, 87 (15) :150601-150601
[8]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[9]  
DERRIDA B, CONDMAT0205353
[10]   Relaxation spectrum of the asymmetric exclusion process with open boundaries [J].
Dudzinski, M ;
Schütz, GM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (47) :8351-8363