Orientation-controlled charge transfer at CuPc/F16CuPc interfaces

被引:50
作者
Chen, Wei [1 ,2 ]
Chen, Shuang [3 ]
Chen, Shi [1 ]
Huang, Yu Li [1 ]
Huang, Han [1 ]
Qi, Dong Chen [1 ]
Gao, Xing Yu [1 ]
Ma, Jing [3 ]
Wee, Andrew Thye Shen [1 ]
机构
[1] Natl Univ Singapore, Dept Phys, Singapore 117542, Singapore
[2] Natl Univ Singapore, Dept Chem, Singapore 117543, Singapore
[3] Nanjing Univ, Key Lab Mesoscop Chem MOE, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-LEVEL ALIGNMENT; ORGANIC HETEROJUNCTION INTERFACES; MOLECULAR-ORIENTATION; THIN-FILMS; ELECTRONIC-STRUCTURE; SPECTROSCOPY; TRANSISTORS; DEVICES; CELLS;
D O I
10.1063/1.3225918
中图分类号
O59 [应用物理学];
学科分类号
摘要
Molecular orientation-controlled charge transfer has been observed at the organic-organic heterojunction interfaces of copper-hexadecafluoro-phthalocyanine (F16CuPc) or copper(II) phthalocyanine (CuPc) on both standing-up and lying-down CuPc or F16CuPc thin films. In situ synchrotron-based photoemission spectroscopy reveals that the charge transfer at the standing F16CuPc/CuPc or CuPc/F16CuPc interface is much larger than that at the lying F16CuPc/CuPc or CuPc/F16CuPc interface. This can be explained by the orientation-dependent ionization potentials of well-ordered organic thin films, which place the highest-occupied molecular orbital of the standing CuPc film much closer to the lowest-unoccupied molecular orbital of the standing F16CuPc film, facilitating stronger charge transfer as compared to that at the lying OOH interfaces. Our results suggest the possibility of manipulating interfacial electronic structures of organic heterojunctions by controlling the molecular orientation, in particular for applications in ambipolar organic field transistors and organic photovoltaics. (C) 2009 American Institute of Physics. [doi:10.1063/1.3225918]
引用
收藏
页数:4
相关论文
共 37 条
[31]   Organic heterojunction and its application for double channel field-effect transistors [J].
Wang, J ;
Wang, HB ;
Yan, XJ ;
Huang, HC ;
Yan, DH .
APPLIED PHYSICS LETTERS, 2005, 87 (09)
[32]   Heterojunction ambipolar organic transistors fabricated by a two-step vacuum-deposition process [J].
Wang, J ;
Wang, HB ;
Yan, XJ ;
Huang, HC ;
Jin, D ;
Shi, JW ;
Tang, YH ;
Yan, DH .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (06) :824-830
[33]   New soft X-ray facility SINS for surface and nanoscale science at SSLS [J].
Yu, XJ ;
Wilhelmi, O ;
Moser, HO ;
Vidyaraj, SV ;
Gao, XY ;
Wee, ATS ;
Nyunt, T ;
Qian, HJ ;
Zheng, HW .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 144 :1031-1034
[34]   Electronic and vibrational spectroscopies applied to organic/inorganic interfaces [J].
Zahn, Dietrich R. T. ;
Gavrila, Gianina N. ;
Salvan, Georgeta .
CHEMICAL REVIEWS, 2007, 107 (04) :1161-1232
[35]   The transport gap of organic semiconductors studied using the combination of direct and inverse photoemission [J].
Zahn, Dietrich R. T. ;
Gavrila, Gianina N. ;
Gorgoi, Mihaela .
CHEMICAL PHYSICS, 2006, 325 (01) :99-112
[36]   Charge transport in accumulation layers of organic heterojunctions [J].
Zhu, Feng ;
Wang, Haibo ;
Song, De ;
Lou, Kun ;
Yan, Donghang .
APPLIED PHYSICS LETTERS, 2008, 93 (10)
[37]   Single-crystal-like organic heterojunction with 40 nm thick charge accumulation layers [J].
Zhu, Feng ;
Yang, Jianbing ;
Song, De ;
Li, Chunhong ;
Yan, Donghang .
APPLIED PHYSICS LETTERS, 2009, 94 (14)