Design of expression vectors for RNA interference based on miRNAs and RNA splicing

被引:73
作者
Du, Guangwei [1 ]
Yonekubo, Joshua
Zeng, Yue
Osisami, Mary
Frohman, Michael A.
机构
[1] SUNY Stony Brook, Dept Pharmacol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Ctr Dev Genet, Stony Brook, NY 11794 USA
关键词
intron; miRNA; RNA interference; RNA splicing; small-hairpin RNA;
D O I
10.1111/j.1742-4658.2006.05534.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA interference (RNAi) mediates sequence-specific post-transcriptional gene silencing in many eukaryotes and is used for reverse genetic studies and therapeutics. RNAi is triggered by double-stranded small interfering RNAs (siRNAs), which can be processed from small hairpin RNAs generated from an expression vector. In some recently described vectors, the siRNAs are expressed from synthetic stem-loop precursors of microRNAs (miRNAs) driven by polymerase II promoters. We have designed new RNAi vectors, designated pSM155 and pSM30, that take into consideration miRNA processing and RNA splicing by placing the miRNA-based artificial miRNA expression cassettes inside of synthetic introns. Like the original miRNA vectors, we show that the pSM155 and pSM30 constructs efficiently down-regulate expression of firefly luciferase and an endogenous gene, phospholipase D2. Moreover, the expression of a coexpressed fluorescent marker is substantially improved by this new design. Another improvement of these new vectors is incorporation of two inverted BsmBI sites placed internal to the arms of the new miRNA-based vectors, so oligos used for cloning are shorter and the cost is reduced. These RNAi vectors thus provide new tools for gene suppression.
引用
收藏
页码:5421 / 5427
页数:7
相关论文
共 20 条
[1]   A system for stable expression of short interfering RNAs in mammalian cells [J].
Brummelkamp, TR ;
Bernards, R ;
Agami, R .
SCIENCE, 2002, 296 (5567) :550-553
[2]   Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155 [J].
Chung, Kwan-Ho ;
Hart, Christopher C. ;
Al-Bassam, Sarmad ;
Avery, Adam ;
Taylor, Jennifer ;
Patel, Paresh D. ;
Vojtek, Anne B. ;
Turner, David L. .
NUCLEIC ACIDS RESEARCH, 2006, 34 (07)
[3]   Transcription and processing of human microRNA precursors [J].
Cullen, BR .
MOLECULAR CELL, 2004, 16 (06) :861-865
[4]   Processing of primary microRNAs by the Microprocessor complex [J].
Denli, AM ;
Tops, BBJ ;
Plasterk, RHA ;
Ketting, RF ;
Hannon, GJ .
NATURE, 2004, 432 (7014) :231-235
[5]   Probing tumor phenotypes using stable and regulated synthetic microRNA precursors [J].
Dickins, RA ;
Hemann, MT ;
Zilfou, JT ;
Simpson, DR ;
Ibarra, I ;
Hannon, GJ ;
Lowe, SW .
NATURE GENETICS, 2005, 37 (11) :1289-1295
[6]   Phospholipase D2 localizes to the plasma membrane and regulates angiotensin II receptor endocytosis [J].
Du, GW ;
Huang, P ;
Liang, BT ;
Frohman, MA .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (03) :1024-1030
[7]   Mammalian phospholipase D structure and regulation [J].
Frohman, MA ;
Sung, TC ;
Morris, AJ .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1999, 1439 (02) :175-186
[8]   The Microprocessor complex mediates the genesis of microRNAs [J].
Gregory, RI ;
Yan, KP ;
Amuthan, G ;
Chendrimada, T ;
Doratotaj, B ;
Cooch, N ;
Shiekhattar, R .
NATURE, 2004, 432 (7014) :235-240
[9]   The Drosha-DGCR8 complex in primary microRNA processing [J].
Han, JJ ;
Lee, Y ;
Yeom, KH ;
Kim, YK ;
Jin, H ;
Kim, VN .
GENES & DEVELOPMENT, 2004, 18 (24) :3016-3027
[10]   MicroRNA biogenesis: Coordinated cropping and dicing [J].
Kim, VN .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (05) :376-385