Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics

被引:315
作者
Jones, Marcus
Lo, Shun S.
Scholes, Gregory D. [1 ]
机构
[1] Univ Toronto, Dept Chem, Inst Opt Sci, Toronto, ON M5S 3H6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
quantum dot; states; electron transfer; time-correlated single-photon counting; fluorescence intermittency; CDSE QUANTUM DOTS; DETECTED MAGNETIC-RESONANCE; FLUORESCENCE INTERMITTENCY; COLLOIDAL NANOCRYSTALS; OPTICAL-PROPERTIES; RADIATIVE DECAY; EMISSION; LUMINESCENCE; TEMPERATURE; RECOMBINATION;
D O I
10.1073/pnas.0809316106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Charge carrier trapping is an important phenomenon in nanocrystal (NC) decay dynamics because it reduces photoluminescence (PL) quantum efficiencies and obscures efforts to understand the interaction of NC excitons with their surroundings. Particularly crucial to our understanding of excitation dynamics in, e.g., multiNC assemblies, would be a way of differentiating between processes involving trap states and those that do not. Direct optical measurement of NC trap state processes is not usually possible because they have negligible transition dipole moments; however, they are known to indirectly affect exciton photoluminescence. Here, we develop a framework, based on Marcus electron transfer theory, to determine NC trap state dynamics from time-resolved NC exciton PL measurements. Our results demonstrate the sensitivity of PL to interfacial dynamics, indicating that the technique can be used as an indirect but effective probe of trap distribution changes. We anticipate that this study represents a step toward understanding how excitons in nanocrystals interact with their surroundings: a quality that must be optimized for their efficient application in photovoltaics, photodetectors, or chemical sensors.
引用
收藏
页码:3011 / 3016
页数:6
相关论文
共 53 条
[21]   Photoenhancement of luminescence in colloidal CdSe quantum dot solutions [J].
Jones, M ;
Nedeljkovic, J ;
Ellingson, RJ ;
Nozik, AJ ;
Rumbles, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (41) :11346-11352
[22]   Exciton trapping and recombination in type IICdSe/CdTe nanorod heterostructures [J].
Jones, Marcus ;
Kumar, Sandeep ;
Lo, Shun S. ;
Scholes, Gregory D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5423-5431
[23]   Ligand effects on optical properties of CdSe nanocrystals [J].
Kalyuzhny, G ;
Murray, RW .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (15) :7012-7021
[24]   Optical gain and stimulated emission in nanocrystal quantum dots [J].
Klimov, VI ;
Mikhailovsky, AA ;
Xu, S ;
Malko, A ;
Hollingsworth, JA ;
Leatherdale, CA ;
Eisler, HJ ;
Bawendi, MG .
SCIENCE, 2000, 290 (5490) :314-317
[25]   Charge and photoionization properties of single semiconductor nanocrystals [J].
Krauss, TD ;
O'Brien, S ;
Brus, LE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (09) :1725-1733
[26]   On/"off" fluorescence intermittency of single semiconductor quantum dots [J].
Kuno, M ;
Fromm, DP ;
Hamann, HF ;
Gallagher, A ;
Nesbitt, DJ .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (02) :1028-1040
[27]   Recombination dynamics of luminescence in colloidal CdSe/ZrS quantum dots [J].
Lee, WZ ;
Shu, GW ;
Wang, JS ;
Shen, JL ;
Lin, CA ;
Chang, WH ;
Ruaan, RC ;
Chou, WC ;
Lu, CH ;
Lee, YC .
NANOTECHNOLOGY, 2005, 16 (09) :1517-1521
[28]   Optically detected magnetic resonance study of electron/hole traps on CdSe quantum dot surfaces [J].
Lifshitz, E ;
Dag, I ;
Litvitn, ID ;
Hodes, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (46) :9245-9250
[29]   Optically detected magnetic resonance studies of the surface/interface properties of II-VI semiconductor quantum dots [J].
Lifshitz, E ;
Glozman, A ;
Litvin, ID ;
Porteanu, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (45) :10449-10461
[30]   Mechanistic study of precursor evolution in colloidal group II-VI semiconductor nanocrystal synthesis [J].
Liu, Haitao ;
Owen, Jonathan S. ;
Alivisatos, A. Paul .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (02) :305-312