We have used sensitive real-time measurements of film stress during Si1-xGex molecular beam epitaxy to examine strain relaxation due to coherent island formation, and to probe the kinetics of Ge surface segregation. We first describe our novel curvature-measurement technique for real-time stress determination. Measurements of the relaxation kinetics during high temperature Si79Ge21 growth on Si (001) are reported in which formation of highly regular arrays of [501]-faceted islands produce 20% stress relaxation. An island shape transition is also observed that reduces the effective stress by up to 50% without dislocations. Nonuniform composition profiles due to Ge surface segregation during growth of planar alloy films are determined with submonolayer thickness resolution from the real-time stress evolution. Up to two monolayers of Ge can segregate to the growth surface.