Fractional variational calculus and the transversality conditions

被引:187
作者
Agrawal, O. P. [1 ]
机构
[1] So Illinois Univ, Carbondale, IL 62901 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2006年 / 39卷 / 33期
关键词
D O I
10.1088/0305-4470/39/33/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper presents the Euler-Lagrange equations and the transversality conditions for fractional variational problems. The fractional derivatives are defined in the sense of Riemann-Liouville and Caputo. The connection between the transversality conditions and the natural boundary conditions necessary to solve a fractional differential equation is examined. It is demonstrated that fractional boundary conditions may be necessary even when the problem is defined in terms of the Caputo derivative. Furthermore, both fractional derivatives (the Riemann-Liouville and the Caputo) arise in the formulations, even when the fractional variational problem is defined in terms of one fractional derivative only. Examples are presented to demonstrate the applications of the formulations.
引用
收藏
页码:10375 / 10384
页数:10
相关论文
共 25 条
[1]  
AGRAWAL O, 2006, UNPUB FINITE ELEMENT
[2]   A general formulation and solution scheme for fractional optimal control problems [J].
Agrawal, OP .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :323-337
[3]   A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems [J].
Agrawal, OP .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :339-341
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
AGRAWAL OP, 2005, FRACTIONAL DIFFERENT, P615
[6]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[7]  
BLISS GA, 1963, LECT CALCULUS VARIAT
[8]   Extending Bauer's corollary to fractional derivatives [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (11) :L117-L121
[9]   Nonconservative Lagrangian mechanics: a generalized function approach [J].
Dreisigmeyer, DW ;
Young, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (30) :8297-8310
[10]  
Dym C. L., 1973, SOLID MECH VARIATION