Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems

被引:83
作者
Rabl, P. [1 ]
Genes, C. [2 ,3 ]
Hammerer, K. [2 ,3 ]
Aspelmeyer, M. [4 ,5 ]
机构
[1] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[2] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[3] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
[5] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW A | 2009年 / 80卷 / 06期
关键词
RESOLVED-SIDE-BAND; RADIATION-PRESSURE; CAVITY; OSCILLATOR;
D O I
10.1103/PhysRevA.80.063819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a detailed theoretical discussion of the effects of ubiquitous laser noise on cooling and the coherent dynamics in optomechanical systems. Phase fluctuations of the driving laser induce modulations of the linearized optomechanical coupling as well as a fluctuating force on the mirror due to variations of the mean cavity intensity. We first evaluate the influence of both effects on cavity cooling and find that for a small laser linewidth, the dominant heating mechanism arises from intensity fluctuations. The resulting limit on the final occupation number scales linearly with the cavity intensity both under weak- and strong-coupling conditions. For the strong-coupling regime, we also determine the effect of phase noise on the coherent transfer of single excitations between the cavity and the mechanical resonator and obtain a similar conclusion. Our results show that conditions for optical ground-state cooling and coherent operations are experimentally feasible and thus laser phase noise does pose a challenge but not a stringent limitation for optomechanical systems.
引用
收藏
页数:10
相关论文
共 28 条
[1]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[2]   An all-optical trap for a gram-scale mirror [J].
Corbitt, Thomas ;
Chen, Yanbei ;
Innerhofer, Edith ;
Mueller-Ebhardt, Helge ;
Ottaway, David ;
Rehbein, Henning ;
Sigg, Daniel ;
Whitcomb, Stanley ;
Wipf, Christopher ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[3]   Laser linewidth hazard in optomechanical cooling [J].
Diosi, Lajos .
PHYSICAL REVIEW A, 2008, 78 (02)
[4]   Parametric Normal-Mode Splitting in Cavity Optomechanics [J].
Dobrindt, J. M. ;
Wilson-Rae, I. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[5]  
Gardiner CW., 2000, QUANTUM NOISE
[6]   Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [J].
Genes, C. ;
Vitali, D. ;
Tombesi, P. ;
Gigan, S. ;
Aspelmeyer, M. .
PHYSICAL REVIEW A, 2008, 77 (03)
[7]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70
[8]   Observation of strong coupling between a micromechanical resonator and an optical cavity field [J].
Groeblacher, Simon ;
Hammerer, Klemens ;
Vanner, Michael R. ;
Aspelmeyer, Markus .
NATURE, 2009, 460 (7256) :724-727
[9]   Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity [J].
Groeblacher, Simon ;
Hertzberg, Jared B. ;
Vanner, Michael R. ;
Cole, Garrett D. ;
Gigan, Sylvain ;
Schwab, K. C. ;
Aspelmeyer, Markus .
NATURE PHYSICS, 2009, 5 (07) :485-488
[10]   Cavity optomechanics: Back-action at the mesoscale [J].
Kippenberg, T. J. ;
Vahala, K. J. .
SCIENCE, 2008, 321 (5893) :1172-1176