Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity

被引:284
作者
Groeblacher, Simon [2 ,3 ]
Hertzberg, Jared B. [1 ,4 ]
Vanner, Michael R. [2 ,3 ]
Cole, Garrett D. [2 ,5 ]
Gigan, Sylvain [6 ]
Schwab, K. C. [1 ,7 ]
Aspelmeyer, Markus [2 ]
机构
[1] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[2] Austrian Acad Sci, IQOQI, A-1090 Vienna, Austria
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[5] Vienna Univ Technol, Ctr Micro & Nanostruct ZMNS, A-1040 Vienna, Austria
[6] Ecole Super Phys & Chim Ind Ville Paris, Lab Photon & Matiere, CNRS, UPRA0005, F-75005 Paris, France
[7] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
基金
美国国家科学基金会; 奥地利科学基金会;
关键词
RADIATION-PRESSURE; NANOMECHANICAL RESONATOR; MICROMIRROR; INTERFEROMETER; MOTION;
D O I
10.1038/NPHYS1301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Preparing and manipulating quantum states of mechanical resonators is a highly interdisciplinary undertaking that now receives enormous interest for its far-reaching potential in fundamental and applied science(1,2). Up to now, only nanoscale mechanical devices achieved operation close to the quantum regime(3,4). We report a new micro-optomechanical resonator that is laser cooled to a level of 30 thermal quanta. This is equivalent to the best nanomechanical devices, however, with a mass more than four orders of magnitude larger ( 43 ng versus 1 pg) and at more than two orders of magnitude higher environment temperature ( 5 K versus 30 mK). Despite the large laser-added cooling factor of 4,000 and the cryogenic environment, our cooling performance is not limited by residual absorption effects. These results pave the way for the preparation of 100-mu m scale objects in the quantum regime. Possible applications range from quantum-limited optomechanical sensing devices to macroscopic tests of quantum physics(5,6).
引用
收藏
页码:485 / 488
页数:4
相关论文
共 29 条
[1]   High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. ;
Mackowski, J. -M. ;
Michel, C. ;
Pinard, L. ;
Francais, O. ;
Rousseau, L. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[2]   Radiation-pressure cooling and optomechanical instability of a micromirror [J].
Arcizet, O. ;
Cohadon, P. -F. ;
Briant, T. ;
Pinard, M. ;
Heidmann, A. .
NATURE, 2006, 444 (7115) :71-74
[3]   Focus on Mechanical Systems at the Quantum Limit [J].
Aspelmeyer, Markus ;
Schwab, Keith .
NEW JOURNAL OF PHYSICS, 2008, 10
[4]   Noise thermometry and electron thermometry of a sample-on-cantilever system below 1 Kelvin [J].
Bleszynski-Jayich, A. C. ;
Shanks, W. E. ;
Harrisa, J. G. E. .
APPLIED PHYSICS LETTERS, 2008, 92 (01)
[5]   Monocrystalline AlxGa1-xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime [J].
Cole, Garrett D. ;
Groeblacher, Simon ;
Gugler, Katharina ;
Gigan, Sylvain ;
Aspelmeyer, Markus .
APPLIED PHYSICS LETTERS, 2008, 92 (26)
[6]   An all-optical trap for a gram-scale mirror [J].
Corbitt, Thomas ;
Chen, Yanbei ;
Innerhofer, Edith ;
Mueller-Ebhardt, Helge ;
Ottaway, David ;
Rehbein, Henning ;
Sigg, Daniel ;
Whitcomb, Stanley ;
Wipf, Christopher ;
Mavalvala, Nergis .
PHYSICAL REVIEW LETTERS, 2007, 98 (15)
[7]   Parametric Normal-Mode Splitting in Cavity Optomechanics [J].
Dobrindt, J. M. ;
Wilson-Rae, I. ;
Kippenberg, T. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[8]  
Edward D., 1998, HDB OPTICAL CONSTANT
[9]   Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes [J].
Genes, C. ;
Vitali, D. ;
Tombesi, P. ;
Gigan, S. ;
Aspelmeyer, M. .
PHYSICAL REVIEW A, 2008, 77 (03)
[10]   Self-cooling of a micromirror by radiation pressure [J].
Gigan, S. ;
Boehm, H. R. ;
Paternostro, M. ;
Blaser, F. ;
Langer, G. ;
Hertzberg, J. B. ;
Schwab, K. C. ;
Baeuerle, D. ;
Aspelmeyer, M. ;
Zeilinger, A. .
NATURE, 2006, 444 (7115) :67-70