A Contemporary Microbially Maintained Subglacial Ferrous "Ocean"

被引:174
作者
Mikucki, Jill A. [1 ]
Pearson, Ann [1 ]
Johnston, David T. [2 ]
Turchyn, Alexandra V. [3 ]
Farquhar, James [4 ]
Schrag, Daniel P. [1 ]
Anbar, Ariel D. [5 ,6 ]
Priscu, John C. [7 ]
Lee, Peter A. [8 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Dept Organism & Evolutionary Biol, Cambridge, MA 02138 USA
[3] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
[4] Univ Maryland, Dept Geol, College Pk, MD 20742 USA
[5] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[6] Arizona State Univ, Dept Chem & Biochem, Tempe, AZ 85287 USA
[7] Montana State Univ, Dept Land Resources & Environm Sci, Bozeman, MT 59717 USA
[8] Coll Charleston, Hollings Marine Lab, Charleston, SC 29412 USA
关键词
TAYLOR GLACIER; DRY VALLEYS; SULFUR; OXYGEN; SULFATE; EXCHANGE; REDOX; WATER; MODEL; ICE;
D O I
10.1126/science.1167350
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An active microbial assemblage cycles sulfur in a sulfate-rich, ancient marine brine beneath Taylor Glacier, an outlet glacier of the East Antarctic Ice Sheet, with Fe(III) serving as the terminal electron acceptor. Isotopic measurements of sulfate, water, carbonate, and ferrous iron and functional gene analyses of adenosine 5'-phosphosulfate reductase imply that a microbial consortium facilitates a catalytic sulfur cycle. These metabolic pathways result from a limited organic carbon supply because of the absence of contemporary photosynthesis, yielding a subglacial ferrous brine that is anoxic but not sulfidic. Coupled biogeochemical processes below the glacier enable subglacial microbes to grow in extended isolation, demonstrating how analogous organic-starved systems, such as Neoproterozoic oceans, accumulated Fe(II) despite the presence of an active sulfur cycle.
引用
收藏
页码:397 / 400
页数:4
相关论文
共 32 条
[1]   Pleistocene ice and paleo-strain rates at Taylor Glacier, Antarctica [J].
Aciego, S. M. ;
Cuffey, K. M. ;
Kavanaugh, J. L. ;
Morse, D. L. ;
Severinghaus, J. P. .
QUATERNARY RESEARCH, 2007, 68 (03) :303-313
[2]   KINETICS OF OXYGEN EXCHANGE BETWEEN SULFITE ION AND WATER [J].
BETTS, RH ;
VOSS, RH .
CANADIAN JOURNAL OF CHEMISTRY, 1970, 48 (13) :2035-&
[3]   Identification of a new class of 5′-adenylylsulfate (APS) reductases from sulfate-assimilating bacteria [J].
Bick, JA ;
Dennis, JJ ;
Zylstra, GJ ;
Nowack, J ;
Leustek, T .
JOURNAL OF BACTERIOLOGY, 2000, 182 (01) :135-142
[4]  
Black RF., 1965, J GEOL, V73, P175, DOI [10.1086/627053, DOI 10.1086/627053]
[5]   A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes [J].
Brunner, B ;
Bernasconi, SM ;
Kleikemper, J ;
Schroth, MH .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (20) :4773-4785
[6]   A new model for Proterozoic ocean chemistry [J].
Canfield, DE .
NATURE, 1998, 396 (6710) :450-453
[7]   Biogeochemistry of sulfur isotopes [J].
Canfield, DE .
STABLE ISOTOPE GEOCHEMISTRY, 2001, 43 :607-636
[8]   Ferruginous conditions dominated later neoproterozoic deep-water chemistry [J].
Canfield, Donald E. ;
Poulton, Simon W. ;
Knoll, Andrew H. ;
Narbonne, Guy M. ;
Ross, Gerry ;
Goldberg, Tatiana ;
Strauss, Harald .
SCIENCE, 2008, 321 (5891) :949-952
[9]   OXYGEN ISOTOPE EXCHANGE-RATE BETWEEN DISSOLVED SULFATE AND WATER AT HYDROTHERMAL TEMPERATURES [J].
CHIBA, H ;
SAKAI, H .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1985, 49 (04) :993-1000
[10]   PETROGENESIS OF ORTHOGNEISSES IN THE DRY VALLEYS REGION, SOUTH VICTORIA LAND [J].
COX, SC ;
ALLIBONE, AH .
ANTARCTIC SCIENCE, 1991, 3 (04) :405-417