Kapitza conductance of silicon-amorphous polyethylene interfaces by molecular dynamics simulations

被引:172
作者
Hu, Ming [1 ]
Keblinski, Pawel [1 ,2 ]
Schelling, Patrick K. [3 ,4 ]
机构
[1] Rensselaer Polytech Inst, Rensselaer Nanotechnol Ctr, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[3] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[4] Univ Cent Florida, Adv Mat Proc & Anal Ctr, Orlando, FL 32816 USA
关键词
elastic constants; elemental semiconductors; interface phonons; Kapitza resistance; molecular dynamics method; polymers; silicon; thermal conductivity; THERMAL-CONDUCTIVITY; HEAT-FLOW; POLYMER NANOCOMPOSITES; COMPUTER-SIMULATION; FORCE-FIELD; COMPOSITES; RESISTANCE; TRANSPORT;
D O I
10.1103/PhysRevB.79.104305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We use nonequilibrium molecular dynamics simulation to elucidate the interfacial thermal conductance between single-crystal silicon and amorphous polyethylene. In particular, we investigate the role of solid stiffness and the bonding strength across the interface on the interfacial thermal conductance. Simulations of interfacial scattering of individual phonon wave packets indicate that neither diffuse mismatch model nor acoustic mismatch model describes the interfacial scattering process quantitatively. In general, transmission coefficients for longitudinal phonons are significantly higher than those for transverse phonons. We also observe that anharmonic processes can be important for interfacial conductance.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Comparison of theoretical and simulation-based predictions of grain-boundary Kapitza conductance in silicon [J].
Aubry, Sylvie ;
Kimmer, Christopher J. ;
Skye, Ashton ;
Schelling, Patrick K. .
PHYSICAL REVIEW B, 2008, 78 (06)
[2]   Molecular dynamics studies of phonon spectra in mono- and bimetallic nanoclusters [J].
Calvo, SR ;
Balbuena, PB .
SURFACE SCIENCE, 2005, 581 (2-3) :213-224
[3]   DIRECT CALCULATION OF TUNNELING CURRENT [J].
CAROLI, C ;
COMBESCO.R ;
NOZIERES, P ;
SAINTJAM.D .
JOURNAL OF PHYSICS PART C SOLID STATE PHYSICS, 1971, 4 (08) :916-&
[4]  
Devpura A, 2001, MICROSCALE THERM ENG, V5, P177
[5]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[6]   ANALYSIS OF LATTICE THERMAL CONDUCTIVITY [J].
HOLLAND, MG .
PHYSICAL REVIEW, 1963, 132 (06) :2461-&
[7]   Thermal rectification at silicon-amorphous polyethylene interface [J].
Hu, Ming ;
Keblinski, Pawel ;
Li, Baowen .
APPLIED PHYSICS LETTERS, 2008, 92 (21)
[8]   Molecular dynamics simulation of interfacial thermal conductance between silicon and amorphous polyethylene [J].
Hu, Ming ;
Shenogin, Sergei ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2007, 91 (24)
[9]   Interfacial heat flow in carbon nanotube suspensions [J].
Huxtable, ST ;
Cahill, DG ;
Shenogin, S ;
Xue, LP ;
Ozisik, R ;
Barone, P ;
Usrey, M ;
Strano, MS ;
Siddons, G ;
Shim, M ;
Keblinski, P .
NATURE MATERIALS, 2003, 2 (11) :731-734
[10]   Model of interfacial thermal resistance of diamond composites [J].
Jagannadham, K .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1999, 17 (02) :373-379