Identification and evolutionary analysis of novel exons and alternative splicing events using cross-species EST-to-genome comparisons in human, mouse and rat

被引:28
作者
Chen, Feng-Chi [1 ]
Chen, Chuang-Jong [1 ]
Ho, Jar-Yi [1 ]
Chuang, Trees-Juen [1 ]
机构
[1] Acad Sinica, Genom Res Ctr, Taipei 11529, Taiwan
关键词
D O I
10.1186/1471-2105-7-136
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
\ Background: Alternative splicing (AS) is important for evolution and major biological functions in complex organisms. However, the extent of AS in mammals other than human and mouse is largely unknown, making it difficult to study AS evolution in mammals and its biomedical implications. Results: Here we describe a cross-species EST-to-genome comparison algorithm (ENACE) that can identify novel exons for EST-scanty species and distinguish conserved and lineage-specific exons. The identified exons represent not only novel exons but also evolutionarily meaningful AS events that are not previously annotated. A genome-wide AS analysis in human, mouse and rat using ENACE reveals a total of 758 novel cassette-on exons and 167 novel retained introns that have no EST evidence from the same species. RT-PCR-sequencing experiments validated similar to 50 similar to 80% of the tested exons, indicating high presence of exons predicted by ENACE. ENACE is particularly powerful when applied to closely related species. In addition, our analysis shows that the ENACE-identified AS exons tend not to pass the nonsynonymous-to-synonymous substitution ratio test and not to contain protein domain, implying that such exons may be under positive selection or relaxed negative selection. These AS exons may contribute to considerable inter-species functional divergence. Our analysis further indicates that a large number of exons may have been gained or lost during mammalian evolution. Moreover, a functional analysis shows that inter-species divergence of AS events may be substantial in protein carriers and receptor proteins in mammals. These exons may be of interest to studies of AS evolution. The ENACE programs and sequences of the ENACE-identified AS events are available for download. Conclusion: ENACE can identify potential novel cassette exons and retained introns between closely related species using a comparative approach. It can also provide information regarding lineage- or species-specificity in transcript isoforms, which are important for evolutionary and functional studies.
引用
收藏
页数:14
相关论文
共 49 条
[1]   How did alternative splicing evolve? [J].
Ast, G .
NATURE REVIEWS GENETICS, 2004, 5 (10) :773-782
[2]   Mechanisms of alternative pre-messenger RNA splicing [J].
Black, DL .
ANNUAL REVIEW OF BIOCHEMISTRY, 2003, 72 :291-336
[3]   Alternative splicing and evolution [J].
Boue, S ;
Letunic, I ;
Bork, P .
BIOESSAYS, 2003, 25 (11) :1031-1034
[4]   Alternative splicing and genome complexity [J].
Brett, D ;
Pospisil, H ;
Valcárcel, J ;
Reich, J ;
Bork, P .
NATURE GENETICS, 2002, 30 (01) :29-30
[5]   EST comparison indicates 38% of human mRNAs contain possible alternative splice forms [J].
Brett, D ;
Hanke, J ;
Lehmann, G ;
Haase, S ;
Delbrück, S ;
Krueger, S ;
Reich, J ;
Bork, P .
FEBS LETTERS, 2000, 474 (01) :83-86
[6]   A comparative method for identification of gene structures and alternatively spliced variants [J].
Chuang, TJ ;
Chen, FC ;
Chou, MY .
BIOINFORMATICS, 2004, 20 (17) :3064-3079
[7]   A complexity reduction algorithm for analysis and annotation of large genomic sequences [J].
Chuang, TJ ;
Lin, WC ;
Lee, HC ;
Wang, CW ;
Hsiao, KL ;
Wang, ZH ;
Shieh, D ;
Lin, SC ;
Ch'ang, LY .
GENOME RESEARCH, 2003, 13 (02) :313-322
[8]   ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome [J].
Croft, L ;
Schandorff, S ;
Clark, F ;
Burrage, K ;
Arctander, P ;
Mattick, JS .
NATURE GENETICS, 2000, 24 (04) :340-341
[9]   Mechanisms of translational control by the 3′ UTR in development and differentiation [J].
de Moor, CH ;
Meijer, H ;
Lissenden, S .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2005, 16 (01) :49-58
[10]   ESTGenes: Alternative splicing from ESTs in Ensembl [J].
Eyras, E ;
Caccamo, M ;
Curwen, V ;
Clamp, M .
GENOME RESEARCH, 2004, 14 (05) :976-987