Effect of Isovalent Substitution on the Thermoelectric Properties of the Cu2ZnGeSe4-xSx Series of Solid Solutions

被引:91
作者
Heinrich, Christophe P. [1 ,2 ]
Day, Tristan W. [3 ]
Zeier, Wolfgang G. [1 ,3 ]
Snyder, G. Jeffrey [3 ]
Tremel, Wolfgang [1 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Anorgan Chem & Analyt Chem, D-55099 Mainz, Germany
[2] Johannes Gutenberg Univ Mainz, Grad Sch Mat Sci Mainz, D-55128 Mainz, Germany
[3] CALTECH, Pasadena, CA 91125 USA
关键词
QUATERNARY CHALCOGENIDE NANOCRYSTALS; CU2ZNSNS4; NANOCRYSTALS; THERMAL-CONDUCTIVITY; SCATTERING; DISORDER; POWER;
D O I
10.1021/ja410753k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Knowledge of structure property relationships is a key feature of materials design. The control of thermal transport has proven to be crucial for the optimization of thermoelectric materials. We report the synthesis, chemical characterization, thermoelectric transport properties, and thermal transport calculations of the complete solid solution series Cu2ZnGeSe4-xSx (x = 0-4). Throughout the substitution series a continuous Vegard-like behavior of the lattice parameters, bond distances, optical band gap energies, and sound velocities are found, which enables the tuning of these properties adjusting the initial composition. Refinements of the special chalcogen positions revealed a change in bonding angles, resulting in crystallographic strain possibly affecting transport properties. Thermal transport measurements showed a reduction in the room-temperature thermal conductivity of 42% triggered by the introduced disorder. Thermal transport calculations of mass and strain contrast revealed that 34% of the reduction in thermal conductivity is due to the mass contrast only and 8% is due to crystallographic strain.
引用
收藏
页码:442 / 448
页数:7
相关论文
共 55 条
[1]  
ALEKSEEV.GT, 1971, SOV PHYS SEMICOND+, V4, P1122
[2]   Cooling, heating, generating power, and recovering waste heat with thermoelectric systems [J].
Bell, Lon E. .
SCIENCE, 2008, 321 (5895) :1457-1461
[3]   Measurement of the electrical resistivity and Hall coefficient at high temperatures [J].
Borup, Kasper A. ;
Toberer, Eric S. ;
Zoltan, Leslie D. ;
Nakatsukasa, George ;
Errico, Michael ;
Fleurial, Jean-Pierre ;
Iversen, Bo B. ;
Snyder, G. Jeffrey .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (12)
[4]   EFFECT OF POINT IMPERFECTIONS ON LATTICE THERMAL CONDUCTIVITY [J].
CALLAWAY, J ;
VONBAEYER, HC .
PHYSICAL REVIEW, 1960, 120 (04) :1149-1154
[5]  
Coelho A., 2004, TOPAS ACAD V4 1
[6]   Thermoelectric cooling and power generation [J].
DiSalvo, FJ .
SCIENCE, 1999, 285 (5428) :703-706
[7]   PREPARATION AND CHARACTERIZATION OF CU2ZNGES4-YSEY [J].
DOVERSPIKE, K ;
DWIGHT, K ;
WOLD, A .
CHEMISTRY OF MATERIALS, 1990, 2 (02) :194-197
[8]  
Fan F. J., 2013, ENERG ENVIRON SCI, V7, P190
[9]   ELECTRICAL, MAGNETIC, AND EPR STUDIES OF THE QUATERNARY CHALCOGENIDES CU2AIIBIVX4 PREPARED BY IODINE TRANSPORT [J].
GUEN, L ;
GLAUNSINGER, WS .
JOURNAL OF SOLID STATE CHEMISTRY, 1980, 35 (01) :10-21
[10]   Band alignment at the Cu2ZnSn(SxSe1-x)4/CdS interface [J].
Haight, Richard ;
Barkhouse, Aaron ;
Gunawan, Oki ;
Shin, Byungha ;
Copel, Matt ;
Hopstaken, Marinus ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2011, 98 (25)