Approach to Gaussian stochastic behavior for systems driven by deterministic chaotic forces

被引:20
作者
Hilgers, A
Beck, C
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Phys, D-52056 Aachen, Germany
[2] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 05期
关键词
D O I
10.1103/PhysRevE.60.5385
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider skew-product dynamical systems that describe the stroboscopic dynamics of a damped particle subjected to a chaotic kick force. In a suitable scaling limit the dynamics converges to the Ornstein-Uhlenbeck process. We investigate the deterministic chaotic corrections in the vicinity of this Gaussian limit case for various examples of chaotic forces. We present numerical evidence that, for certain classes of chaotic forces, the deterministic chaotic corrections of the invariant density are universal. We provide analytical results for forces generated by Tchebyscheff maps and sketch a renormalization group theory in the space of probability densities. [S1063-651X(99)11610-6].
引用
收藏
页码:5385 / 5393
页数:9
相关论文
共 44 条
[1]   DIMENSION INCREASE IN FILTERED CHAOTIC SIGNALS [J].
BADII, R ;
BROGGI, G ;
DERIGHETTI, B ;
RAVANI, M ;
CILIBERTO, S ;
POLITI, A ;
RUBIO, MA .
PHYSICAL REVIEW LETTERS, 1988, 60 (11) :979-982
[2]   CHAOTIC CASCADE MODEL FOR TURBULENT VELOCITY DISTRIBUTIONS [J].
BECK, C .
PHYSICAL REVIEW E, 1994, 49 (05) :3641-3652
[3]   Spontaneous symmetry breaking in a coupled map lattice simulation of quantized Higgs fields [J].
Beck, C .
PHYSICS LETTERS A, 1998, 248 (5-6) :386-392
[4]   ERGODIC PROPERTIES OF A KICKED DAMPED PARTICLE [J].
BECK, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (01) :51-60
[5]   BROWNIAN-MOTION FROM DETERMINISTIC DYNAMICS [J].
BECK, C .
PHYSICA A, 1990, 169 (02) :324-336
[6]   CHAOTIC QUANTIZATION OF FIELD-THEORIES [J].
BECK, C .
NONLINEARITY, 1995, 8 (03) :423-441
[7]   FROM DYNAMIC-SYSTEMS TO THE LANGEVIN EQUATION [J].
BECK, C ;
ROEPSTORFF, G .
PHYSICA A, 1987, 145 (1-2) :1-14
[8]   Dynamical systems of Langevin type [J].
Beck, C .
PHYSICA A, 1996, 233 (1-2) :419-440
[9]   FROM THE PERRON-FROBENIUS EQUATION TO THE FOKKER-PLANCK EQUATION [J].
BECK, C .
JOURNAL OF STATISTICAL PHYSICS, 1995, 79 (5-6) :875-894
[10]   HIGHER CORRELATION-FUNCTIONS OF CHAOTIC DYNAMIC-SYSTEMS - A GRAPH THEORETICAL APPROACH [J].
BECK, C .
NONLINEARITY, 1991, 4 (04) :1131-1158