Entanglement Renormalization in Two Spatial Dimensions

被引:126
作者
Evenbly, G. [1 ]
Vidal, G. [1 ]
机构
[1] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevLett.102.180406
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose and test a scheme for entanglement renormalization capable of addressing large two-dimensional quantum lattice systems. In a translationally invariant system, the cost of simulations grows only as the logarithm of the lattice size; at a quantum critical point, the simulation cost becomes independent of the lattice size and infinite systems can be analyzed. We demonstrate the performance of the scheme by investigating the low energy properties of the 2D quantum Ising model on a square lattice of linear size L={6,9,18,54,infinity} with periodic boundary conditions. We compute the ground state and evaluate local observables and two-point correlators. We also produce accurate estimates of the critical magnetic field and critical exponent beta. A calculation of the energy gap shows that it scales as 1/L at the critical point.
引用
收藏
页数:4
相关论文
共 20 条
[1]   Entanglement renormalization and topological order [J].
Aguado, Miguel ;
Vidal, Guifre .
PHYSICAL REVIEW LETTERS, 2008, 100 (07)
[2]   Cluster Monte Carlo simulation of the transverse Ising model -: art. no. 066110 [J].
Blöte, HWJ ;
Deng, YJ .
PHYSICAL REVIEW E, 2002, 66 (06) :8
[3]   Multiscale entanglement renormalization ansatz in two dimensions: Quantum Ising model [J].
Cincio, Lukasz ;
Dziarmaga, Jacek ;
Rams, Marek M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[4]   Algorithms for entanglement renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2009, 79 (14)
[5]  
EVENBLY G, ARXIV07100692V2, P53201
[6]  
EVENBLY G, ARXIV09043383V1
[7]  
EVENBLY G, ARXIV08012449V1, P53201
[8]   Quantum Multiscale Entanglement Renormalization Ansatz Channels [J].
Giovannetti, V. ;
Montangero, S. ;
Fazio, Rosario .
PHYSICAL REVIEW LETTERS, 2008, 101 (18)
[9]   Classical Simulation of Infinite-Size Quantum Lattice Systems in Two Spatial Dimensions [J].
Jordan, J. ;
Orus, R. ;
Vidal, G. ;
Verstraete, F. ;
Cirac, J. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (25)
[10]  
KOENIG R, ARXIV08064583V1, P53201