Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs

被引:24
作者
Camilli, Fabio [1 ]
Marchi, Claudio [2 ]
机构
[1] Univ Aquila, Dipartimento Matemat Pura & Applicata, I-67040 Laquila, Italy
[2] Univ Padua, Dipartimento Matemat P & A, I-35121 Padua, Italy
关键词
HAMILTON-JACOBI EQUATIONS; SINGULAR PERTURBATIONS; VISCOSITY SOLUTIONS;
D O I
10.1088/0951-7715/22/6/011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider periodic homogenization of the fully nonlinear uniformly elliptic equation u(epsilon) + H(x, x/epsilon, Du(epsilon), D(2)u(epsilon)) = 0. We give an estimate of the rate of convergence of ue to the solution u of the homogenized problem u + (H) over bar (x, Du, D(2)u) = 0. Moreover we describe a numerical scheme for the approximation of the effective nonlinearity (H) over bar and we estimate the corresponding rate of convergence.
引用
收藏
页码:1481 / 1498
页数:18
相关论文
共 35 条
[1]   Homogenization of Hamilton-Jacobi equations: Numerical methods [J].
Achdou, Yves ;
Camilli, Fabio ;
Dolcetta, Italo Capuzzo .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2008, 18 (07) :1115-1143
[2]   Singular perturbations of nonlinear degenerate parabolic PDEs: A general convergence result [J].
Alvarez, O ;
Bardi, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (01) :17-61
[3]   Viscosity solutions methods for singular perturbations in deterministic and stochastic control [J].
Alvarez, O ;
Bardi, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (04) :1159-1188
[4]  
ALVAREZ O, 2009, MEM AM MATH IN PRESS
[5]  
[Anonymous], 1968, TRANSLATIONS MATH MO
[6]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[7]   On ergodic stochastic control [J].
Arisawa, M ;
Lions, PL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1998, 23 (11-12) :2187-2217
[8]   Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations [J].
Bacaër, N .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2001, 35 (06) :1185-1195
[9]  
Bardi M., 1997, Optimal control and viscosity solutions of HamiltonJacobi-Bellman equations
[10]  
Barles G., 1991, Asymptotic Analysis, V4, P271