The preparation of a novel Si-CNF composite as an effective anodic material for lithium-ion batteries

被引:59
作者
Jang, Sang-Min [2 ]
Miyawaki, Jin [1 ]
Tsuji, Masaharu [1 ]
Mochida, Isao [1 ]
Yoon, Seong-Ho [1 ]
机构
[1] Kyushu Univ, Inst Mat Chem & Engn, Fukuoka 8168580, Japan
[2] Kyushu Univ, Interdisciplinary Grad Sch Engn Sci, Fukuoka 8168580, Japan
关键词
ATMOSPHERE ELECTRON-MICROSCOPY; GRAPHITE GASIFICATION; SECONDARY BATTERIES; CATALYTIC INFLUENCE; SILICON; CAPACITY; INTERCALATION; PERFORMANCE;
D O I
10.1016/j.carbon.2009.07.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The suggested pyrolytic carbon (PC) coated Si-carbon nanofiber (CNF) composites can be a solution to provide higher discharge capacity and cycle-ability facilitating the 1st cycle coulombic efficiency of cheap metallic Si particles as an appropriate anodic material for Li-ion battery. The CNFs on the surface of Si particle can provide flexible space to relieve volumetric expansion during charge. Well-controlled PC coating on the surface of Si particle can improve the coherence of CNFs on the Si particle, thereby to enhance the role of CNF as all the more effective electrode material. The additional PC coating on the Si-CNF composite can accomplish the lower surface area and afford the improvement of the 1st cycle coulombic efficiency. Ingenious combinations of PC coating and CNF compositeness successfully made the novel type Si-CNF composite to achieve a remarkable discharge capacity (1115 mA h g(-1)), an excellent cycle-ability (77% retention rate after 20th cycle), and a good 1st cycle coulombic efficiency (79%) for the effective application as an anode material. (c) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3383 / 3391
页数:9
相关论文
共 24 条
[11]   Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries [J].
Kim, Jae-Hun ;
Sohn, Hun-Joon ;
Kim, Hansu ;
Jeong, Goojin ;
Choi, Wanuk .
JOURNAL OF POWER SOURCES, 2007, 170 (02) :456-459
[12]   Effects of sulfuric acid treatment on the microstructure and electrochemical performance of a polyacrylonitrile (PAN)-based carbon anode [J].
Kim, YJ ;
Lee, HJ ;
Lee, SW ;
Cho, BW ;
Park, CR .
CARBON, 2005, 43 (01) :163-169
[13]   Si-containing disordered carbons prepared by pyrolysis of pitch polysilane blends: effect of oxygen and sulfur [J].
Larcher, D ;
Mudalige, C ;
George, AE ;
Porter, V ;
Gharghouri, M ;
Dahn, JR .
SOLID STATE IONICS, 1999, 122 (1-4) :71-83
[14]   Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries [J].
Lee, KL ;
Jung, JY ;
Lee, SW ;
Moon, HS ;
Park, JW .
JOURNAL OF POWER SOURCES, 2004, 129 (02) :270-274
[15]   Morphology-stable silicon-based composite for Li-intercalation [J].
Liu, Y ;
Hanai, K ;
Yang, J ;
Imanishi, N ;
Hirano, A ;
Takeda, Y .
SOLID STATE IONICS, 2004, 168 (1-2) :61-68
[16]   Electrochemical intercalation of lithium into graphite: Influence of the solvent composition and of the nature of the lithium salt [J].
Naji, A ;
Willmann, P ;
Billaud, D .
CARBON, 1998, 36 (09) :1347-1352
[17]   Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries [J].
Shu, J ;
Li, H ;
Yang, RZ ;
Shi, Y ;
Huang, XJ .
ELECTROCHEMISTRY COMMUNICATIONS, 2006, 8 (01) :51-54
[18]   Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries [J].
Wang, Wei ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :650-658
[19]   High capacity silicon/carbon composite anode materials for lithium ion batteries [J].
Wen, ZS ;
Yang, J ;
Wang, BF ;
Wang, K ;
Liu, Y .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) :165-168
[20]   Gas desorption behavior of graphite anodes used for lithium ion secondary batteries [J].
Yamauchi, Y ;
Hino, T ;
Ohzeki, K ;
Kubota, Y ;
Deyama, S .
CARBON, 2005, 43 (06) :1334-1336