Broadband log-periodogram regression of time series with long-range dependence

被引:1
作者
Moulines, E [1 ]
Soulier, P
机构
[1] Ecole Natl Super Telecommun, CNRS URA 820, F-75634 Paris, France
[2] Univ Evry, Dept Math, F-91025 Evry, France
关键词
long-range dependence; log-periodogram regression; central limit theorems for dependent variables;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses the properties of an estimator of the memory parameter of a stationary long-memory time-series originally proposed by Robinson. As opposed to "narrow-band" estimators of the memory parameter (such as the Geweke and Porter-Hudak or the Gaussian semiparametric estimators) which use only the periodogram ordinates belonging to an interval which degenerates to zero as the sample size n increases, this estimator builds a model of the spectral density of the process over all the frequency range, hence the name, "broadband." This is achieved by estimating the "short-memory" component of the spectral density, f*(x) = \1 - e(ix)\(2d)f(x), where d is an element of (-1/2,1/2) is the memory parameter and f(x) is the spectral density, by means of a truncated Fourier series estimator of log f*. Assuming Gaussianity and additional conditions on the regularity of fb which seem mild, we obtain expressions for the asymptotic bias and variance of the long-memory parameter estimator as a function of the truncation order. Under additional assumptions, we show that this estimator is consistent and asymptotically normal. If the true spectral density is sufficiently smooth outside the origin, this broadband estimator outperforms existing semiparametric estimators, attaining an asymptotic mean-square error O(log(n)/n).
引用
收藏
页码:1415 / 1439
页数:25
相关论文
共 21 条
[1]  
[Anonymous], ADV EC 6 WORLD C
[2]  
ARCONES M, 1994, ANN PROBAB, V22, P2243
[3]  
BERAN J, 1993, BIOMETRIKA, V80, P817, DOI 10.2307/2336873
[4]  
Beran J, 1994, STAT LONG MEMORY PRO
[5]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[6]  
Deo R., 1998, J TIME SER ANAL, V19, P19, DOI [DOI 10.1111/1467-9892.00075, 10.1111/1467-9892.00075]
[7]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[8]  
Geweke J., 1983, J TIME SER ANAL, V4, P221, DOI DOI 10.1111/J.1467-9892.1983.TB00371.X
[9]   A CENTRAL-LIMIT-THEOREM FOR QUADRATIC-FORMS IN STRONGLY DEPENDENT LINEAR VARIABLES AND ITS APPLICATION TO ASYMPTOTICAL NORMALITY OF WHITTLES ESTIMATE [J].
GIRAITIS, L ;
SURGAILIS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 86 (01) :87-104
[10]  
Giraitis L., 1997, Journal of Time Series Analysis, V18, P49