Noise-induced Min phenotypes in E-coli

被引:149
作者
Fange, David
Elf, Johan [1 ]
机构
[1] Uppsala Univ, Biomed Ctr, Dept Cell & Mol Biol, Uppsala, Sweden
[2] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA USA
关键词
D O I
10.1371/journal.pcbi.0020080
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The spatiotemporal oscillations of the Escherichia coli proteins MinD and MinE direct cell division to the region between the chromosomes. Several quantitative models of the Min system have been suggested before, but no one of them accounts for the behavior of all documented mutant phenotypes. We analyzed the stochastic reaction-diffusion kinetics of the Min proteins for several E. coli mutants and compared the results to the corresponding deterministic mean-field description. We found that wild-type (wt) and filamentous (ftsZ(-)) cells are well characterized by the mean-field model, but that a stochastic model is necessary to account for several of the characteristics of the spherical (rodA(-)) and phospathedylethanolamide-deficient (PE-) phenotypes. For spherical cells, the mean-field model is bistable, and the system can get trapped in a non-oscillatory state. However, when the intrinsic noise is considered, only the experimentally observed oscillatory behavior remains. The stochastic model also reproduces the change in oscillation directions observed in the spherical phenotype and the occasional gliding of the MinD region along the inner membrane. For the PE- mutant, the stochastic model explains the appearance of randomly localized and dense MinD clusters as a nucleation phenomenon, in which the stochastic kinetics at low copy number causes local discharges of the high MinD(ATP) to MinD(ADP) potential. We find that a simple five-reaction model of the Min system can explain all documented Min phenotypes, if stochastic kinetics and three-dimensional diffusion are accounted for. Our results emphasize that local copy number fluctuation may result in phenotypic differences although the total number of molecules of the relevant species is high.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 73 条
[11]   DIFFUSION-CONTROLLED REACTION RATES [J].
COLLINS, FC ;
KIMBALL, GE .
JOURNAL OF COLLOID SCIENCE, 1949, 4 (04) :425-437
[12]   Exploring intracellular space: function of the Min system in round-shaped Escherichia coli [J].
Corbin, BD ;
Yu, XC ;
Margolin, W .
EMBO JOURNAL, 2002, 21 (08) :1998-2008
[13]   A DIVISION INHIBITOR AND A TOPOLOGICAL SPECIFICITY FACTOR CODED FOR BY THE MINICELL LOCUS DETERMINE PROPER PLACEMENT OF THE DIVISION SEPTUM IN ESCHERICHIA-COLI [J].
DEBOER, PAJ ;
CROSSLEY, RE ;
ROTHFIELD, LI .
CELL, 1989, 56 (04) :641-649
[14]   PHYSICAL ASPECTS OF THE GROWTH AND REGULATION OF MICROTUBULE STRUCTURES [J].
DOGTEROM, M ;
LEIBLER, S .
PHYSICAL REVIEW LETTERS, 1993, 70 (09) :1347-1350
[15]   MARKOFF CHAINS - DENUMERABLE CASE [J].
DOOB, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1945, 58 (NOV) :455-473
[16]   Stochastic model for Soj relocation dynamics in Bacillus subtilis [J].
Doubrovinski, K ;
Howard, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (28) :9808-9813
[17]   A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement [J].
Drew, DA ;
Osborn, MJ ;
Rothfield, LI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (17) :6114-6118
[18]   Near-critical phenomena in intracellular metabolite pools [J].
Elf, J ;
Paulsson, J ;
Berg, OG ;
Ehrenberg, M .
BIOPHYSICAL JOURNAL, 2003, 84 (01) :154-170
[19]  
ELF J, 2004, SYST BIOL, V2, P230, DOI DOI 10.1049/SB:20045021
[20]   The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle [J].
Fu, XL ;
Shih, YL ;
Zhang, Y ;
Rothfield, LI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :980-985