A methodology for measuring size-dependent chemical composition of ultrafine particles

被引:62
作者
Geller, MD
Kim, S
Misra, C
Sioutas, C
Olson, BA
Marple, VA
机构
[1] Univ So Calif, Dept Civil & Environm Engn, Los Angeles, CA 90089 USA
[2] Univ Minnesota, Minneapolis, MN USA
关键词
D O I
10.1080/02786820290038447
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ultrafine particulate matter (PM) consists of particles mostly emitted by combustion sources but also formed during gas-to-particle formation processes in the atmosphere. Various studies have shown these particles to be toxic. The very small mass of these particles has posed a great challenge in determining their size-dependent chemical composition using conventional aerosol sampling technologies. Implementing 2 technologies in series has made it possible to overcome these 2 problems. The first technology is the USC Ultrafine Concentrator, which concentrates ultrafine particles (i.e., 10-180 nm) by a factor of 20-22. Ultrafine particles are subsequently size fractionated and collected on suitable substrates using the NanoMOUDI, a recently developed cascade impactor that classifies particles in 5 size ranges from 10 to 180 nm. The entire system (concentrator + NanoMOUDI) was employed in the field at 2 different locations in the Los Angeles Basin in order to collect ultrafine particles in 3 consecutive 3 h time intervals (i.e., morning, midday, and afternoon). The results indicate a distinct mode in the 32-56 nm size range that is most pronounced in the morning and decreases throughout the day at Downey, CA (a "source" site), affected primarily by vehicular PM emissions. While the mass concentrations at the source site decrease with time, the levels measured at Riverside, CA (a "receptor" site), are highest in the afternoon with a minimum at midday. In Riverside, ultrafine EC (elemental carbon) and OC (organic carbon) concentrations were highly correlated only during the morning period, whereas these correlations collapsed later in the day. These results indicate that in this area, ultrafine PM is generated by primary emissions during the morning hours, whereas secondary aerosol formation processes become more important as the day progresses.
引用
收藏
页码:748 / 762
页数:15
相关论文
共 36 条
[21]  
Marple V. A., 1999, MICROORIFICE IMPACTO
[22]   THE DISSOCIATION-CONSTANT OF AMMONIUM-NITRATE AND ITS DEPENDENCE ON TEMPERATURE, RELATIVE-HUMIDITY AND PARTICLE-SIZE [J].
MOZURKEWICH, M .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1993, 27 (02) :261-270
[23]   ASSOCIATION OF PARTICULATE AIR-POLLUTION AND ACUTE MORTALITY - INVOLVEMENT OF ULTRAFINE PARTICLES [J].
OBERDORSTER, G ;
GELEIN, RM ;
FERIN, J ;
WEISS, B .
INHALATION TOXICOLOGY, 1995, 7 (01) :111-124
[24]   CORRELATION BETWEEN PARTICLE-SIZE, IN-VIVO PARTICLE PERSISTENCE, AND LUNG INJURY [J].
OBERDORSTER, G ;
FERIN, J ;
LEHNERT, BE .
ENVIRONMENTAL HEALTH PERSPECTIVES, 1994, 102 :173-179
[25]   SECONDARY ORGANIC AEROSOL FORMATION AND TRANSPORT [J].
PANDIS, SN ;
HARLEY, RA ;
CASS, GR ;
SEINFELD, JH .
ATMOSPHERIC ENVIRONMENT PART A-GENERAL TOPICS, 1992, 26 (13) :2269-2282
[26]   REVIEW OF EPIDEMIOLOGICAL EVIDENCE OF HEALTH-EFFECTS OF PARTICULATE AIR-POLLUTION [J].
POPE, CA ;
DOCKERY, DW ;
SCHWARTZ, J .
INHALATION TOXICOLOGY, 1995, 7 (01) :1-18
[27]   TOXICOLOGICAL EVIDENCE FOR HEALTH-EFFECTS FROM INHALED PARTICULATE POLLUTION - DOES IT SUPPORT THE HUMAN-EXPERIENCE [J].
SCHLESINGER, RB .
INHALATION TOXICOLOGY, 1995, 7 (01) :99-109
[28]  
SEINFELD JH, 1998, ATMOSPHERIC CHEM PHY, P700
[29]   Measurements of ultrafine particle concentration and size distribution in the urban atmosphere [J].
Shi, JP ;
Khan, AA ;
Harrison, RM .
SCIENCE OF THE TOTAL ENVIRONMENT, 1999, 235 (1-3) :51-64
[30]   Development and evaluation of a prototype ultrafine particle concentrator [J].
Sioutas, C ;
Kim, S ;
Chang, M .
JOURNAL OF AEROSOL SCIENCE, 1999, 30 (08) :1001-1017