Differential calculi and linear connections

被引:40
作者
Dimakis, A [1 ]
Madore, J [1 ]
机构
[1] UNIV PARIS 11,PHYS THEOR & HAUTES ENERGIES LAB,F-91405 ORSAY,FRANCE
关键词
D O I
10.1063/1.531645
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is proposed for defining an arbitrary number of differential calculi over a given noncommutative associative algebra. As an example the generalized quantum plane is studied. It is found that there is a strong correlation, but not a one-to-one correspondence, between the module structure of the 1-forms and the metric torsion-free connections on it. In the commutative limit the connection remains as a shadow of the algebraic structure of the 1-forms. (C) 1996 American Institute of Physics.
引用
收藏
页码:4647 / 4661
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1960, LECT FIBRE BUNDLES D
[2]   DIFFERENTIAL CALCULI ON COMMUTATIVE ALGEBRAS [J].
BAEHR, HC ;
DIMAKIS, A ;
MULLERHOISSEN, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (11) :3197-3222
[3]  
BRESSER K, 1995, 9595 GOETTP
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[6]   ALGEBRA EXTENSIONS AND NONSINGULARITY [J].
CUNTZ, JC ;
QUILLEN, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :251-289
[7]   Non-commutative geometry and kinetic theory of open systems [J].
Dimakis, A ;
Tzanakis, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (03) :577-594
[8]  
DIMAKIS A, 1992, 3392 GOETP
[9]   GAUGE BOSONS IN A NONCOMMUTATIVE GEOMETRY [J].
DUBOISVIOLETTE, M ;
MADORE, J ;
KERNER, R .
PHYSICS LETTERS B, 1989, 217 (04) :485-488
[10]   CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) :1709-1724