Differential calculi and linear connections

被引:40
作者
Dimakis, A [1 ]
Madore, J [1 ]
机构
[1] UNIV PARIS 11,PHYS THEOR & HAUTES ENERGIES LAB,F-91405 ORSAY,FRANCE
关键词
D O I
10.1063/1.531645
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is proposed for defining an arbitrary number of differential calculi over a given noncommutative associative algebra. As an example the generalized quantum plane is studied. It is found that there is a strong correlation, but not a one-to-one correspondence, between the module structure of the 1-forms and the metric torsion-free connections on it. In the commutative limit the connection remains as a shadow of the algebraic structure of the 1-forms. (C) 1996 American Institute of Physics.
引用
收藏
页码:4647 / 4661
页数:15
相关论文
共 22 条
[11]   LINEAR CONNECTIONS ON THE QUANTUM PLANE [J].
DUBOISVIOLETTE, M ;
MADORE, J ;
MASSON, T ;
MOURAD, J .
LETTERS IN MATHEMATICAL PHYSICS, 1995, 35 (04) :351-358
[12]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[13]  
DUBOISVIOLETTE M, IN PRESS LETT MATH P
[14]  
DUBOISVIOLETTE M, IN PRESS J GEOM PHYS
[15]  
DUBOISVIOLETTE M, IN PRESS J MATH PHYS
[16]  
KAROUBI M, 1981, CURRENT TRENDS ALG 1
[17]   LINEAR CONNECTIONS ON MATRIX GEOMETRIES [J].
MADORE, J ;
MASSON, T ;
MOURAD, J .
CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (06) :1429-1440
[18]  
Madore J., 1995, INTRO NONCOMMUTATIVE
[19]  
MADORE J, 1996, 5 HELL SCH WORKSH EL
[20]  
MADORE J, IN PRESS CLASS QUANT