Symmetry-breaking mechanism for the Z4 general-covariant evolution system -: art. no. 064036

被引:54
作者
Bona, C [1 ]
Ledvinka, T [1 ]
Palenzuela, C [1 ]
Zácek, M [1 ]
机构
[1] Univ Illes Balears, Dept Fis, E-07071 Palma de Mallorca, Spain
来源
PHYSICAL REVIEW D | 2004年 / 69卷 / 06期
关键词
D O I
10.1103/PhysRevD.69.064036
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The general-covariant Z4 formalism is further analyzed. The gauge conditions are generalized with a view to numerical relativity applications and the conditions for obtaining strongly hyperbolic evolution systems are Given both at the first and the second order levels. A symmetry-breaking mechanism is proposed that allows one, when applied in a partial way, to recover previously proposed strongly hyperbolic formalisms, like the BSSN and the Bona-Masso formulas. When applied in its full form, the symmetry-breaking mechanism allows one to recover the full five-parameter family of first order KST systems. Numerical codes based in the proposed formalisms are tested. A robust stability test is provided by evolving random noise data around Minkowski space-time. A strong field test is provided by the collapse of a periodic background of plane Gravitational waves, as described by the Gowdy metric.
引用
收藏
页数:11
相关论文
共 33 条
  • [1] EINSTEIN AND YANG-MILLS THEORIES IN HYPERBOLIC FORM WITHOUT GAUGE-FIXING
    ABRAHAMS, A
    ANDERSON, A
    CHOQUETBRUHAT, Y
    YORK, JW
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3377 - 3381
  • [2] ALCUBIERRE M, GRQC0305023
  • [3] Fixing Einstein's equations
    Anderson, A
    York, JW
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (22) : 4384 - 4387
  • [4] Numerical integration of Einstein's field equations
    Baumgarte, TW
    Shapiro, SL
    [J]. PHYSICAL REVIEW D, 1999, 59 (02):
  • [5] BERGER B, GRQC0207035
  • [6] 3+1 covariant suite of numerical relativity evolution systems
    Bona, C
    Ledvinka, T
    Palenzuela, C
    [J]. PHYSICAL REVIEW D, 2002, 66 (08):
  • [7] General-covariant evolution formalism for numerical relativity -: art. no. 104005
    Bona, C
    Ledvinka, T
    Palenzuela, C
    Zácek, M
    [J]. PHYSICAL REVIEW D, 2003, 67 (10)
  • [8] HYPERBOLIC EVOLUTION SYSTEM FOR NUMERICAL RELATIVITY
    BONA, C
    MASSO, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 68 (08) : 1097 - 1099
  • [9] NEW FORMALISM FOR NUMERICAL RELATIVITY
    BONA, C
    MASSO, J
    SEIDEL, E
    STELA, J
    [J]. PHYSICAL REVIEW LETTERS, 1995, 75 (04) : 600 - 603
  • [10] HARMONIC SYNCHRONIZATIONS OF SPACETIME
    BONA, C
    MASSO, J
    [J]. PHYSICAL REVIEW D, 1988, 38 (08): : 2419 - 2422