MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

被引:220
作者
Blum, Torsten [1 ]
Briesemeister, Sebastian [1 ]
Kohlbacher, Oliver [1 ]
机构
[1] Univ Tubingen, ZBIT WSI, Div Simulat Biol Syst, D-72074 Tubingen, Germany
来源
BMC BIOINFORMATICS | 2009年 / 10卷
关键词
SUPPORT VECTOR MACHINES; ENSEMBLE CLASSIFIER; LOCATION PREDICTION; SEQUENCE; CELL; PEPTIDES; MPLOC; TEXT; PLOC; TOOL;
D O I
10.1186/1471-2105-10-274
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results: We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion: MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.
引用
收藏
页数:11
相关论文
共 56 条
[1]   Adaptation of protein surfaces to subcellular location [J].
Andrade, MA ;
O'Donoghue, SI ;
Rost, B .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 276 (02) :517-525
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   The universal protein resource (UniProt) [J].
Bairoch, Amos ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Puy, Ghislaine Argoud ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Dobrokhotov, Pavel ;
Dornevil, Dolnide ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
Ioannidis, Vassilios ;
Ivanyi, Ivan ;
James, Janet ;
Jain, Eric ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente ;
Lemercier, Philippe ;
Le Saux, Virginie .
NUCLEIC ACIDS RESEARCH, 2007, 35 :D193-D197
[4]   Extensive feature detection of N-terminal protein sorting signals [J].
Bannai, H ;
Tamada, Y ;
Maruyama, O ;
Nakai, K ;
Miyano, S .
BIOINFORMATICS, 2002, 18 (02) :298-305
[5]   Improved prediction of signal peptides: SignalP 3.0 [J].
Bendtsen, JD ;
Nielsen, H ;
von Heijne, G ;
Brunak, S .
JOURNAL OF MOLECULAR BIOLOGY, 2004, 340 (04) :783-795
[6]   ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST [J].
Bhasin, M ;
Raghava, GPS .
NUCLEIC ACIDS RESEARCH, 2004, 32 :W414-W419
[7]   Prediction of subcellular localization using sequence-biased recurrent networks [J].
Bodén, M ;
Hawkins, J .
BIOINFORMATICS, 2005, 21 (10) :2279-2286
[8]  
Brady Scott, 2008, Pac Symp Biocomput, P604
[9]  
Casadio Rita, 2008, Briefings in Functional Genomics & Proteomics, V7, P63, DOI 10.1093/bfgp/eln003
[10]   Relation between amino acid composition and cellular location of proteins [J].
Cedano, J ;
Aloy, P ;
PerezPons, JA ;
Querol, E .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (03) :594-600