Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO2 Nanowires and Their Influence on Photoelectrochemical Operation

被引:58
作者
Chen, Haining [1 ]
Wei, Zhanhua [1 ]
Yan, Keyou [1 ]
Bai, Yang [1 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 16期
关键词
NANOTUBE ARRAYS; ELECTROCHEMICAL REDUCTION; SOLAR-CELLS; WATER; FILMS; NANOSTRUCTURES; RECOMBINATION; EFFICIENCY; NANORODS; DENSITY;
D O I
10.1021/jz5014505
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Introducing oxygen vacancies (V-O) into TiO2 materials is one of the most promising ways to significantly enhance light-harvesting and photocatalytic efficiencies of photoelectrochemical (PEC) cells for water splitting among others. However, the nature of electron transport in V-O-TiO2 nanostructures is not well understood, especially in an operating device. In this work, we use the intensity-modulated photocurrent spectroscopy technique to study the electron-transport property of V-O-TiO2 nanowires (NWs). It is found that the electron transport in pristine TiO2 NWs displays a single trap-limited mode, whereas two electron-transport modes were detected in V-O-TiO2 NWs, a trap-free transport mode at the core, and a trap-limited transport mode near the surface. The considerably higher diffusion coefficient (D-n) of the trap-free transport mode grants a more rapid electron flow in V-O-TiO2 NWs than that in pristine TiO2 NWs. This electron-transport feature is expected to be common in other oxygen-deficient metal oxides, lending a general strategy for promoting the PEC device performance.
引用
收藏
页码:2890 / 2896
页数:7
相关论文
共 49 条
[1]   Relaxation of Electron Carriers in the Density of States of Nanocrystalline TiO2 [J].
Bertoluzzi, Luca ;
Herraiz-Cardona, Isaac ;
Gottesman, Ronen ;
Zaban, Arie ;
Bisquert, Juan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (04) :689-694
[2]   Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells [J].
Bisquert, J ;
Vikhrenko, VS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (07) :2313-2322
[3]   Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes [J].
Bisquert, J ;
Garcia-Belmonte, G ;
Fabregat-Santiago, F .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1999, 3 (06) :337-347
[4]   Physical electrochemistry of nanostructured devices [J].
Bisquert, Juan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (01) :49-72
[5]   Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells [J].
Cao, F ;
Oskam, G ;
Meyer, GJ ;
Searson, PC .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (42) :17021-17027
[6]   Rapid and Controllable Flame Reduction of TiO2 Nanowires for Enhanced Solar Water-Splitting [J].
Cho, In Sun ;
Logar, Manca ;
Lee, Chi Hwan ;
Cai, Lili ;
Prinz, Fritz B. ;
Zheng, Xiaolin .
NANO LETTERS, 2014, 14 (01) :24-31
[7]   Branched TiO2 Nanorods for Photoelectrochemical Hydrogen Production [J].
Cho, In Sun ;
Chen, Zhebo ;
Forman, Arnold J. ;
Kim, Dong Rip ;
Rao, Pratap M. ;
Jaramillo, Thomas F. ;
Zheng, Xiaolin .
NANO LETTERS, 2011, 11 (11) :4978-4984
[8]   Water Splitting by Nanocrystalline TiO2 in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination [J].
Cowan, Alexander J. ;
Tang, Junwang ;
Leng, Wenhua ;
Durrant, James R. ;
Klug, David R. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09) :4208-4214
[9]   Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting [J].
Cui, Houlei ;
Zhao, Wei ;
Yang, Chongyin ;
Yin, Hao ;
Lin, Tianquan ;
Shan, Yufeng ;
Xie, Yian ;
Gu, Hui ;
Huang, Fuqiang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (23) :8612-8616
[10]   Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications [J].
Feng, Xinjian ;
Shankar, Karthik ;
Varghese, Oomman K. ;
Paulose, Maggie ;
Latempa, Thomas J. ;
Grimes, Craig A. .
NANO LETTERS, 2008, 8 (11) :3781-3786