Unveiling Two Electron-Transport Modes in Oxygen-Deficient TiO2 Nanowires and Their Influence on Photoelectrochemical Operation

被引:58
作者
Chen, Haining [1 ]
Wei, Zhanhua [1 ]
Yan, Keyou [1 ]
Bai, Yang [1 ]
Yang, Shihe [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Chem, William Mong Inst Nano Sci & Technol, Kowloon, Hong Kong, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2014年 / 5卷 / 16期
关键词
NANOTUBE ARRAYS; ELECTROCHEMICAL REDUCTION; SOLAR-CELLS; WATER; FILMS; NANOSTRUCTURES; RECOMBINATION; EFFICIENCY; NANORODS; DENSITY;
D O I
10.1021/jz5014505
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Introducing oxygen vacancies (V-O) into TiO2 materials is one of the most promising ways to significantly enhance light-harvesting and photocatalytic efficiencies of photoelectrochemical (PEC) cells for water splitting among others. However, the nature of electron transport in V-O-TiO2 nanostructures is not well understood, especially in an operating device. In this work, we use the intensity-modulated photocurrent spectroscopy technique to study the electron-transport property of V-O-TiO2 nanowires (NWs). It is found that the electron transport in pristine TiO2 NWs displays a single trap-limited mode, whereas two electron-transport modes were detected in V-O-TiO2 NWs, a trap-free transport mode at the core, and a trap-limited transport mode near the surface. The considerably higher diffusion coefficient (D-n) of the trap-free transport mode grants a more rapid electron flow in V-O-TiO2 NWs than that in pristine TiO2 NWs. This electron-transport feature is expected to be common in other oxygen-deficient metal oxides, lending a general strategy for promoting the PEC device performance.
引用
收藏
页码:2890 / 2896
页数:7
相关论文
共 49 条
[31]   Electron transport and back reaction in dye sensitised nanocrystalline photovoltaic cells [J].
Peter, LM ;
Wijayantha, KGU .
ELECTROCHIMICA ACTA, 2000, 45 (28) :4543-4551
[32]   Au Nanostructure-Decorated TiO2 Nanowires Exhibiting Photoactivity Across Entire UV-visible Region for Photoelectrochemical Water Splitting [J].
Pu, Ying-Chih ;
Wang, Gongming ;
Chang, Kao-Der ;
Ling, Yichuan ;
Lin, Yin-Kai ;
Fitzmorris, Bob C. ;
Liu, Chia-Ming ;
Lu, Xihong ;
Tong, Yexiang ;
Zhang, Jin Z. ;
Hsu, Yung-Jung ;
Li, Yat .
NANO LETTERS, 2013, 13 (08) :3817-3823
[33]   Secondary Branching and Nitrogen Doping of ZnO Nanotetrapods: Building a Highly Active Network for Photoelectrochemical Water Splitting [J].
Qiu, Yongcai ;
Yan, Keyou ;
Deng, Hong ;
Yang, Shihe .
NANO LETTERS, 2012, 12 (01) :407-413
[34]   Simplified and advanced Theory of the Boundary Layer Rectifiers [J].
Schottky, W. .
ZEITSCHRIFT FUR PHYSIK, 1942, 118 (9-10) :539-592
[35]   Transient electrical response of dye-sensitized ZnO nanorod solar cells [J].
Tornow, Julian ;
Schwarzburg, Klaus .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (24) :8692-8698
[36]   Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films:: Transient photocurrent and random-walk modeling studies [J].
van de Lagemaat, J ;
Frank, AJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (45) :11194-11205
[37]  
van de Lagemaat J, 2000, J PHYS CHEM B, V104, P4292, DOI 10.1021/jp000838o
[38]   Electron transport in disordered semiconductors studied by a small harmonic modulation of the steady state [J].
Vanmaekelbergh, D ;
de Jongh, PE .
PHYSICAL REVIEW B, 2000, 61 (07) :4699-4704
[39]   Solar Water Splitting Cells [J].
Walter, Michael G. ;
Warren, Emily L. ;
McKone, James R. ;
Boettcher, Shannon W. ;
Mi, Qixi ;
Santori, Elizabeth A. ;
Lewis, Nathan S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6446-6473
[40]   Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications [J].
Wang, Gongming ;
Ling, Yichuan ;
Li, Yat .
NANOSCALE, 2012, 4 (21) :6682-6691