Localized modes in arrays of boson-fermion mixtures

被引:50
作者
Bludov, Yu. V.
Konotop, V. V.
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
[3] Univ Castilla La Mancha, ETS Ingn Ind, Dept Matemat, E-13071 Ciudad Real, Spain
来源
PHYSICAL REVIEW A | 2006年 / 74卷 / 04期
关键词
D O I
10.1103/PhysRevA.74.043616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is shown that the mean-field description of a boson-fermion mixture with a dominating fermionic component, loaded in a one-dimensional optical lattice, is reduced to the nonlinear Schrodinger equation with a periodic potential and periodic nonlinearity. In such a system there exist localized modes having peculiar properties. In particular, for some regions of parameters there exists a lower bound for a number of bosons necessary for creation of a mode, while for other domains small amplitude gap solitons are not available in the vicinity of either of the gap edges. We found that the lowest branch of the symmetric solution either does not exist or exists only for a restricted range of energies in a gap, unlike in pure bosonic condensates. The simplest bifurcations of the modes are shown and stability of the modes is verified numerically.
引用
收藏
页数:6
相关论文
共 20 条
[1]  
Abdullaev F. K., 2004, NONLINEAR WAVES CLAS
[2]   Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates [J].
Abdullaev, FK ;
Konotop, VV .
PHYSICAL REVIEW A, 2003, 68 (01) :5
[3]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[4]  
ALFIMOV GL, PS0605035
[5]  
[Anonymous], 2002, PROC 3 C SAN LORENZO, DOI DOI 10.1142/5214
[6]  
BLUDOV YV, UNPUB
[7]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[8]   Bound states of nonlinear Schrodinger equations with a periodic nonlinear microstructure [J].
Fibich, G. ;
Sivan, Y. ;
Weinstein, M. I. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 217 (01) :31-57
[9]   Two-component gap solitons in two- and one-dimensional Bose-Einstein condensates [J].
Gubeskys, A ;
Malomed, BA ;
Merhasin, IM .
PHYSICAL REVIEW A, 2006, 73 (02)
[10]  
Kostov NA, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.056617