Theory of nonlinear matter waves in optical lattices

被引:387
作者
Brazhnyi, VA
Konotop, VV
机构
[1] Univ Lisbon, Ctr Fis Theor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Lisbon, Dept Fis, P-1749016 Lisbon, Portugal
来源
MODERN PHYSICS LETTERS B | 2004年 / 18卷 / 14期
关键词
Bose-Einstein condensate; matter waves; optical lattice; solitons;
D O I
10.1142/S0217984904007190
中图分类号
O59 [应用物理学];
学科分类号
摘要
We consider several effects of the matter wave dynamics which can be observed in Bose-Einstein condensates embedded into optical lattices. For low-density condensates, we derive approximate evolution equations, the form of which depends on relation among the main spatial scales of the system. Reduction of the Gross-Pitaevskii equation to a lattice model (the tight-binding approximation) is also presented. Within the framework of the obtained models, we consider modulational instability of the condensate, solitary and periodic matter waves, paying special attention to different limits of the solutions, i.e. to smooth movable gap solitons and to strongly localized discrete modes. We also discuss how the Feshbach resonance, a linear force and lattice defects affect the nonlinear matter waves.
引用
收藏
页码:627 / 651
页数:25
相关论文
共 92 条
[1]   Intrinsic localized modes in arrays of atomic-molecular Bose-Einstein condensates [J].
Abdullaev, FK ;
Konotop, VV .
PHYSICAL REVIEW A, 2003, 68 (01) :5
[2]   Array of Bose-Einstein condensates under time-periodic Feshbach-resonance management [J].
Abdullaev, FK ;
Tsoy, EN ;
Malomed, BA ;
Kraenkel, RA .
PHYSICAL REVIEW A, 2003, 68 (05) :8
[3]   Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length [J].
Abdullaev, FK ;
Kamchatnov, AM ;
Konotop, VV ;
Brazhnyi, VA .
PHYSICAL REVIEW LETTERS, 2003, 90 (23) :4
[4]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[5]  
ABDULLAEV FK, 2002, PROGR OPTICS, V44, P303, DOI DOI 10.1016/S0079-6638(02)80018-X
[6]  
Abramovitz M, 1965, HDB MATH FUNCTIONS
[7]   On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation [J].
Alfimov, GL ;
Brazhnyi, VA ;
Konotop, VV .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 194 (1-2) :127-150
[8]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[9]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[10]   Atomic-phase interference devices based on ring-shaped Bose-Einstein condensates: Two-ring case [J].
Anderson, BP ;
Dholakia, K ;
Wright, EM .
PHYSICAL REVIEW A, 2003, 67 (03) :8