On classification of intrinsic localized modes for the discrete nonlinear Schrodinger equation

被引:78
作者
Alfimov, GL
Brazhnyi, VA
Konotop, VV
机构
[1] Univ Lisbon, Ctr Fis Teor & Computac, P-1649003 Lisbon, Portugal
[2] Univ Complutense, Fac Informat, Dept Matemat Aplicada, E-28040 Madrid, Spain
[3] Univ Lisbon, Dept Fis, P-1649003 Lisbon, Portugal
关键词
discrete nonlinear Schrodinger equation; intrinsic localized modes; discrete breather; bifurcations;
D O I
10.1016/j.physd.2004.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider localized modes (discrete breathers) of the discrete nonlinear Schrodinger equation i(dpsi(n)/dt) = psi(n+1) + psi(n-1) - 2psi(n) + sigma\psi(n)\(2) psi(n), sigma = +/-1, n epsilon Z. We study the diversity of the steady-state solutions of the form psi(n) (t) = e(iomegat) upsilon(n), and the intervals of the frequency, omega, of their existence. The base for the analysis is provided by the anticontinuous limit (omega negative and large enough) where all the solutions can be coded by the sequences of three symbols "-", "0" and Using dynamical systems approach we show that this coding is valid for omega < omega* approximate to -3.4533 and the point omega* is a point of accumulation of saddle-node bifurcations. Also we study other bifurcations of intrinsic localized modes which take place for omega > omega* and give the complete table of them for the solutions with codes consisting of less than four symbols. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 24 条
[1]   Nonlinear excitations in arrays of Bose-Einstein condensates [J].
Abdullaev, FK ;
Baizakov, BB ;
Darmanyan, SA ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW A, 2001, 64 (04) :436061-4360610
[2]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[3]   A method for locating symmetric homoclinic orbits using symbolic dynamics [J].
Bergamin, JM ;
Bountis, T ;
Jung, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (45) :8059-8070
[4]   Homoclinic orbits of invertible maps [J].
Bergamin, JM ;
Bountis, T ;
Vrahatis, MN .
NONLINEARITY, 2002, 15 (05) :1603-1619
[5]   Stability of strongly localized excitations in discrete media with cubic nonlinearity [J].
Darmanyan, S ;
Kobyakov, A ;
Lederer, F .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 1998, 86 (04) :682-686
[6]   MARKOV SHIFTS IN THE HENON FAMILY [J].
DAVIS, MJ ;
MACKAY, RS ;
SANNAMI, A .
PHYSICA D, 1991, 52 (2-3) :171-178
[7]   Generalized Henon maps: the cubic diffeomorphisms of the plane [J].
Dullin, HR ;
Meiss, JD .
PHYSICA D, 2000, 143 (1-4) :262-289
[8]  
Easton R. W., 1998, GEOMETRIC METHODS DI
[9]  
Eilbeck J. C., 2003, Proceedings of the Third Conference: Localization & Energy Transfer in Nonlinear Systems, P44
[10]   Discrete breathers [J].
Flach, S ;
Willis, CR .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05) :181-264