Functionalization of hydrogen-terminated Si(100) substrate by surface-initiated RAFT polymerization of 4-vinylbenzyl chloride and subsequent derivatization for photoinduced metallization

被引:52
作者
Yu, WH [1 ]
Kang, ET [1 ]
Neoh, KG [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
关键词
D O I
10.1021/ie049687c
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Well-defined and covalently bonded poly(4-vinylbenzyl chloride) (PVBC) brushes on single-crystal silicon were prepared by surface-initiated reversible addition-fragmentation chain transfer (RAFT)-mediated graft polymerization of 4-vinylbenzyl chloride (VBC) on hydrogen-terminated Si(100) (Si-H) surface. Surface initiators were immobilized on the Si-H substrates in three ;consecutive steps: W coupling of an omega-unsaturated alkyl ester to the Si-H surface under U-V irradiation, (ii) reduction of the ester groups by LiAlH4, and (iii) esterification of the surface-tethered hydroxyl groups with 4,4'-azobis(4-cyanopentanoic acid). Kinetic studies revealed a linear increase in VBC polymer (PVBC) film thickness with polymerization time, indicating that the chain growth from the surface was a controlled process. Subsequent growth of a poly(pentafluorostyrene) (PFS) block from the PVBC-grafted silicon (Si-g-PVBC) surface, using the PVBC brushes as the macro chain transfer agents, provides further evidence of the existence of "living" chain ends. The benzyl chloride groups of the grafted PVBC were derivatized by reaction with an equimolar mixture of 1,4-di-(chloromethyl)benzene and 4,4-bipyridine to give rise to the Si-g-viologen surface. The redox-responsive property of the Si-g-viologen surface was demonstrated by photoreduction of the surface-adsorbed Pd(II) and Au(III) ions to their respective metallic form.
引用
收藏
页码:5194 / 5202
页数:9
相关论文
共 54 条
[1]   The preparation of flat H-Si(111) surfaces in 40% NH4F revisited [J].
Allongue, P ;
de Villeneuve, CH ;
Morin, S ;
Boukherroub, R ;
Wayner, DDM .
ELECTROCHIMICA ACTA, 2000, 45 (28) :4591-4598
[2]   Intrazeolite photochemistry .17. Zeolites as electron donors: Photolysis of methylviologen incorporated within zeolites [J].
Alvaro, M ;
Garcia, H ;
Garcia, S ;
Marquez, F ;
Scaiano, JC .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (16) :3043-3051
[3]   Kinetic investigations of reversible addition fragmentation chain transfer polymerizations: Cumyl phenyldithioacetate mediated homopolymerizations of styrene and methyl methacrylate [J].
Barner-Kowollik, C ;
Quinn, JF ;
Nguyen, TLU ;
Heuts, JPA ;
Davis, TP .
MACROMOLECULES, 2001, 34 (22) :7849-7857
[4]   Synthesis of polymer brushes on silicate substrates via reversible addition fragmentation chain transfer technique [J].
Baum, M ;
Brittain, WJ .
MACROMOLECULES, 2002, 35 (03) :610-615
[5]  
Beamson G., 1992, ADV MATER, DOI DOI 10.1002/ADMA.19930051035
[6]   Controlled functionalization and multistep chemical manipulation of covalently modified Si(111) surfaces [J].
Boukherroub, R ;
Wayner, DDM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (49) :11513-11515
[7]   Organometallic chemistry on silicon and germanium surfaces [J].
Buriak, JM .
CHEMICAL REVIEWS, 2002, 102 (05) :1271-1308
[8]   Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds [J].
Buriak, JM .
CHEMICAL COMMUNICATIONS, 1999, (12) :1051-1060
[9]   Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process [J].
Chiefari, J ;
Chong, YK ;
Ercole, F ;
Krstina, J ;
Jeffery, J ;
Le, TPT ;
Mayadunne, RTA ;
Meijs, GF ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Thang, SH .
MACROMOLECULES, 1998, 31 (16) :5559-5562
[10]   Thiocarbonylthio compounds (S=C(Z)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Effect of the activating group Z [J].
Chiefari, J ;
Mayadunne, RTA ;
Moad, CL ;
Moad, G ;
Rizzardo, E ;
Postma, A ;
Skidmore, MA ;
Thang, SH .
MACROMOLECULES, 2003, 36 (07) :2273-2283