Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile

被引:38
作者
Lercher, MJ [1 ]
Chamary, JV [1 ]
Hurst, LD [1 ]
机构
[1] Univ Bath, Dept Biol & Biochem, Bath BA2 7AY, Avon, England
关键词
D O I
10.1101/gr.1597404
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In mammalian genomes, linked genes show similar rates of evolution, both at fourfold degenerate synonymous sites (K-4) and at nonsynonymous sites (K-A). Although it has been suggested that the local similarity in the synonymous Substitution rate is an artifact caused by the inclusion of disparately evolving gene pairs, we demonstrate here that this is not the case: after removal of disparately evolving genes, both (1) linked genes and (2) introns from the same gene have more similar silent Substitution rates than expected by chance. What causes the local similarity in both synonymous and nonsynonymous substitution rates? One class of hypotheses argues that both may be related to the observed clustering of genes of comparable expression profile. We investigate these hypotheses using substitution rates from both human-mouse and mouse-rat comparisons, and employing three different methods to assay expression parameters. Although we confirm a negative correlation of expression breadth with both K-4 and K-A, we find no evidence that clustering of similarly expressed genes explains the clustering of genes of comparable substitution rates. If gene expression is not responsible, what about other Causes? At least in the human-mouse comparison, the local similarity in K-A can be explained by the covariation of K-A and K-4. As regards K-4, Our results appear consistent with the notion that local similarity is due to processes associated with melotic recombination.
引用
收藏
页码:1002 / 1013
页数:12
相关论文
共 71 条
[1]   The connection between transcription and genomic instability [J].
Aguilera, A .
EMBO JOURNAL, 2002, 21 (03) :195-201
[2]   Distinct changes of genomic biases in nucleotide substitution at the time of mammalian radiation [J].
Arndt, PF ;
Petrov, DA ;
Hwa, T .
MOLECULAR BIOLOGY AND EVOLUTION, 2003, 20 (11) :1887-1896
[3]   Evidence for a high frequency of simultaneous double-nucleotide substitutions [J].
Averof, M ;
Rokas, A ;
Wolfe, KH ;
Sharp, PM .
SCIENCE, 2000, 287 (5456) :1283-1286
[4]  
Bielawski JP, 2000, GENETICS, V156, P1299
[5]  
Bierne N, 2003, GENETICS, V165, P1587
[6]   The human transcriptome map:: Clustering of highly expressed genes in chromosomal domains [J].
Caron, H ;
van Schaik, B ;
van der Mee, M ;
Baas, F ;
Riggins, G ;
van Sluis, P ;
Hermus, MC ;
van Asperen, R ;
Boon, K ;
Voûte, PA ;
Heisterkamp, S ;
van Kampen, A ;
Versteeg, R .
SCIENCE, 2001, 291 (5507) :1289-+
[7]   Mutation pattern variation among regions of the primate genome [J].
Casane, D ;
Boissinot, S ;
Chang, BHJ ;
Shimmin, LC ;
Li, WH .
JOURNAL OF MOLECULAR EVOLUTION, 1997, 45 (03) :216-226
[8]   Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content [J].
Castresana, J .
NUCLEIC ACIDS RESEARCH, 2002, 30 (08) :1751-1756
[9]   Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis [J].
Castresana, J .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (04) :540-552
[10]  
Castresana J, 2002, GENOME BIOL, V3