Heterostructures and superlattices in one-dimensional nanoscale semiconductors

被引:62
作者
Fang, Xiaosheng [1 ,2 ]
Bando, Yoshio [2 ]
Gautam, Ujjal K. [1 ,2 ]
Zhai, Tianyou [2 ]
Gradecak, Silvija [3 ]
Golberg, Dmitri [2 ]
机构
[1] Natl Inst Mat Sci, ICYS, Tsukuba, Ibaraki 3050044, Japan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki 3050044, Japan
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
关键词
RADIAL NANOWIRE HETEROSTRUCTURES; CHEMICAL-VAPOR-DEPOSITION; TWINNING SUPERLATTICES; CONTROLLED GROWTH; ZNS NANOBELTS; NANOSTRUCTURES; ARRAYS; NANORODS; ELECTRODEPOSITION; NANOMATERIALS;
D O I
10.1039/b902300c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One-dimensional (1D) semiconductor nanostructures are of prime interest due to their potentials in investigating the size and dimensionality dependence of the materials' physical properties and constructing nanoscale electronic and optoelectronic devices. Recent advances in the design and control of heterostructures and superlattices in 1D nanoscale semiconductors have opened the door to new device concepts. 1D heterostructures consisting of two or more important functional materials are of prime importance for revealing unique properties and essential for developing potential nanoelectronic and optoelectronic devices. On the other hand, the controlled growth of twinned superlattices within a single nanostructure could facilitate bandgap engineering and reveal novel electronic behaviours. In addition, an attractive challenge is to achieve the entire growth control within an individual nanostructure, e. g. to make highly reproducible, periodically twinned superlattices with an adjustable twin spacing. This Highlight article reviews some recent key advances in the field and outlines potential future areas that require immediate research and development.
引用
收藏
页码:5683 / 5689
页数:7
相关论文
共 64 条
  • [21] Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor-liquid-solid growth
    Hao, Yufeng
    Meng, Guowen
    Wang, Zhong Lin
    Ye, Changhui
    Zhang, Lide
    [J]. NANO LETTERS, 2006, 6 (08) : 1650 - 1655
  • [22] Radiative Recombination of Spatially Extended Excitons in (ZnSe/CdS)/CdS Heterostructured Nanorods
    Hewa-Kasakarage, Nishshanka N.
    Kirsanova, Maria
    Nemchinov, Alexander
    Schmall, Nickolas
    El-Khoury, Patrick Z.
    Tarnovsky, Alexander N.
    Zamkov, Mikhail
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (03) : 1328 - 1334
  • [23] THERMOELECTRIC FIGURE OF MERIT OF A ONE-DIMENSIONAL CONDUCTOR
    HICKS, LD
    DRESSELHAUS, MS
    [J]. PHYSICAL REVIEW B, 1993, 47 (24): : 16631 - 16634
  • [24] Axial p-n Junctions Realized in Silicon Nanowires by Ion Implantation
    Hoffmann, S.
    Bauer, J.
    Ronning, C.
    Stelzner, Th.
    Michler, J.
    Ballif, C.
    Sivakov, V.
    Christiansen, S. H.
    [J]. NANO LETTERS, 2009, 9 (04) : 1341 - 1344
  • [25] Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires
    Hsieh, Chin-Hua
    Chang, Mu-Tung
    Chien, Yu-Jen
    Chou, Li-Jen
    Chen, Lih-Juann
    Chen, Chii-Dong
    [J]. NANO LETTERS, 2008, 8 (10) : 3288 - 3292
  • [26] Effect of complexing agents on properties of electroless Ni-P deposits
    Cheng, Y. H.
    Zou, Y.
    Cheng, L.
    Liu, W.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2008, 24 (04) : 457 - 460
  • [27] InAs/InP radial nanowire heterostructures as high electron mobility devices
    Jiang, Xiaocheng
    Xiong, Qihua
    Nam, Sungwoo
    Qian, Fang
    Li, Yat
    Lieber, Charles M.
    [J]. NANO LETTERS, 2007, 7 (10) : 3214 - 3218
  • [28] Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes
    Li, L
    Yang, YW
    Li, GH
    Zhang, LD
    [J]. SMALL, 2006, 2 (04) : 548 - 553
  • [29] Li L, 2008, J MATER SCI TECHNOL, V24, P550
  • [30] Li L, 2007, J MATER SCI TECHNOL, V23, P166