Diversity in the Sir2 family of protein deacetylases

被引:79
作者
Buck, SW [1 ]
Gallo, CM [1 ]
Smith, JS [1 ]
机构
[1] Univ Virginia, Dept Biochem & Mol Genet, Hlth Syst, Charlottesville, VA 22908 USA
关键词
sirtuin; NAD(+); S; cerevisiae; silencing;
D O I
10.1189/jlb.0903424
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The silent information regulator (Sir2) family of protein deacetylases (Sirtuins) are nicotinamide adenine dinucleotide (NAD)(+)-dependent enzymes that hydrolyze one molecule of NAD+ for every lysine residue that is deacetylated. The Sirtuins are phylogenetically conserved in eukaryotes, prokaryotes, and Archeal species. Prokaryotic and Archeal species usually have one or two Sirtuin homologs, whereas eukaryotes typically have multiple versions. The founding member of this protein family is the Sir2 histone deacetylase of Saccharomyces cerevisiae, which is absolutely required for transcriptional silencing in this organism. Sirtuins in other organisms often have nonhistone substrates and in eukaryotes, are not always localized in the nucleus. The diversity of substrates is reflected in the various biological activities that Sirtuins function, including development, metabolism, apoptosis, and heterochromatin formation. This review emphasizes the great diversity in Sirtuin function and highlights its unusual catalytic properties.
引用
收藏
页码:939 / 950
页数:12
相关论文
共 123 条
[11]   Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J].
Bitterman, KJ ;
Anderson, RM ;
Cohen, HY ;
Latorre-Esteves, M ;
Sinclair, DA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (47) :45099-45107
[12]   THE SIR2 GENE FAMILY, CONSERVED FROM BACTERIA TO HUMANS, FUNCTIONS IN SILENCING, CELL-CYCLE PROGRESSION, AND CHROMOSOME STABILITY [J].
BRACHMANN, CB ;
SHERMAN, JM ;
DEVINE, SE ;
CAMERON, EE ;
PILLUS, L ;
BOEKE, JD .
GENES & DEVELOPMENT, 1995, 9 (23) :2888-2902
[13]   TRANSCRIPTIONAL SILENCING IN YEAST IS ASSOCIATED WITH REDUCED NUCLEOSOME ACETYLATION [J].
BRAUNSTEIN, M ;
ROSE, AB ;
HOLMES, SG ;
ALLIS, CD ;
BROACH, JR .
GENES & DEVELOPMENT, 1993, 7 (04) :592-604
[14]   Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation [J].
Brooks, CL ;
Gu, W .
CURRENT OPINION IN CELL BIOLOGY, 2003, 15 (02) :164-171
[15]   Evidence that SET1, a factor required for methylation of histone H3, regulates rDNA silencing in S-cerevisiae by a sir2-independent mechanism [J].
Bryk, M ;
Briggs, SD ;
Strahl, BD ;
Curcio, MJ ;
Allis, CD ;
Winston, F .
CURRENT BIOLOGY, 2002, 12 (02) :165-170
[16]   The Sgs1 helicase of Saccharomyces cerevisiae inhibits retrotransposition of Ty1 multimeric arrays [J].
Bryk, M ;
Banerjee, M ;
Conte, D ;
Curcio, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (16) :5374-5388
[17]   Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast [J].
Bryk, M ;
Banerjee, M ;
Murphy, M ;
Knudsen, KE ;
Garfinkel, DJ ;
Curcio, MJ .
GENES & DEVELOPMENT, 1997, 11 (02) :255-269
[18]   RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin [J].
Buck, SW ;
Sandmeier, JJ ;
Smith, JS .
CELL, 2002, 111 (07) :1003-1014
[19]   Structural basis for the NAD-dependent deacetylase mechanism of Sir2 [J].
Chang, JH ;
Kim, HC ;
Hwang, KY ;
Lee, JW ;
Jackson, SP ;
Bell, SD ;
Cho, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (37) :34489-34498
[20]   Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J].
Cheng, HL ;
Mostoslavsky, R ;
Saito, S ;
Manis, JP ;
Gu, YS ;
Patel, P ;
Bronson, R ;
Appella, E ;
Alt, FW ;
Chua, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10794-10799