The characteristic classes of Morita equivalent star products on symplectic manifolds

被引:31
作者
Bursztyn, H [1 ]
Waldmann, S
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s002200200657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give a complete characterization of Morita equivalent star products on symplectic manifolds in terms of their characteristic classes: two star products star and star' on (M,omega) are Morita equivalent if and only if there exists a symplectomorphism psi : M --> M such that the relative class t(star, psi*(star')) is 2pi i-integral. For star products on cotangent bundles, we show that this integrality condition is related to Dirac's quantization condition for magnetic charges.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 37 条
[31]   DEFORMATION QUANTIZATION OF HEISENBERG MANIFOLDS [J].
RIEFFEL, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 122 (04) :531-562
[32]  
RIEFFEL MA, 1982, OPERATOR ALGEBRAS 1, P285
[33]   Morita equivalence and duality [J].
Schwarz, A .
NUCLEAR PHYSICS B, 1998, 534 (03) :720-738
[34]  
STERNHEIMER D, MATHQA9809056
[35]  
WALDMANN S, 1999, THESIS A LUDWIGS U F
[36]  
WEINSTEIN A, SEMINAIRE BOURBAKI 4, V789
[37]  
Woodhouse N., 1992, GEOMETRIC QUANTIZATI