The characteristic classes of Morita equivalent star products on symplectic manifolds

被引:31
作者
Bursztyn, H [1 ]
Waldmann, S
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Freiburg, Fak Phys, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s002200200657
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we give a complete characterization of Morita equivalent star products on symplectic manifolds in terms of their characteristic classes: two star products star and star' on (M,omega) are Morita equivalent if and only if there exists a symplectomorphism psi : M --> M such that the relative class t(star, psi*(star')) is 2pi i-integral. For star products on cotangent bundles, we show that this integrality condition is related to Dirac's quantization condition for magnetic charges.
引用
收藏
页码:103 / 121
页数:19
相关论文
共 37 条
[11]   Semiclassical geometry of quantum line bundles and Morita equivalence of star products [J].
Bursztyn, H .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2002, 2002 (16) :821-846
[12]   Algebraic Rieffel induction, formal Morita equivalence, and applications to deformation quantization [J].
Bursztyn, H ;
Waldmann, S .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (04) :307-364
[13]   *-Ideals and formal Morita equivalence of *-algebras [J].
Bursztyn, H ;
Waldmann, S .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2001, 12 (05) :555-577
[14]   Deformation quantization of Hermitian vector bundles [J].
Bursztyn, H ;
Waldmann, S .
LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (04) :349-365
[15]  
Connes A, 1998, J HIGH ENERGY PHYS
[16]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[17]   A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION [J].
FEDOSOV, BV .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1994, 40 (02) :213-238
[18]   ON DEFORMATION OF RINGS + ALGEBRAS [J].
GERSTENHABER, M .
ANNALS OF MATHEMATICS, 1964, 79 (01) :59-&
[19]  
Gutt S, 2000, MATH PHYS S, V21, P217
[20]   Equivalence of star products on a symplectic manifold;: an introduction to Deligne's Cech cohomology classes [J].
Gutt, S ;
Rawnsley, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 29 (04) :347-392