Adsorptive separation of CH4/CO2 mixtures was studied using a fixed-bed packed with MIL-53(Al) MOF pellets. Such pellets of MIL-53(Al) were produced using a polyvinyl alcohol binder. As revealed by N-2 adsorption isotherms, the use of polyvinyl alcohol as binder results in a loss in overall capacity of 32%. Separations of binary mixtures in breakthrough experiments were successfully performed at pressures varying between I and 8 bar and different mixture compositions. The binary adsorption isotherms reveal a preferential adsorption Of CO2 compared to CH4 over the whole pressure and concentration range. The separation selectivity was affected by total pressure: below 5 bar. a constant selectivity, with an average separation factor of about 7 was observed. Above 5 bar, the average separation factor decreases to about 4. The adsorption selectivity is affected by breathing of the framework and specific interaction Of CO2 with framework hydroxyl groups. CO2 desorption can be realised by mild thermal treatment. (C) 2008 Elsevier Inc. All rights reserved.
机构:
Univ Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USAUniv Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USA
Millward, AR
Yaghi, OM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USAUniv Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USA
机构:
Univ Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USAUniv Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USA
Millward, AR
Yaghi, OM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USAUniv Michigan, Dept Chem, Mat Design & Discovery Grp, Ann Arbor, MI 48109 USA