An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods

被引:56
作者
Dias, JG
Wedel, M
机构
[1] ISCTE, Dept Quantitat Methods, P-1649026 Lisbon, Portugal
[2] Univ Michigan, Sch Business, Ann Arbor, MI 48109 USA
关键词
Gaussian mixture models; EM algorithm; SEM algorithm; MCMC; label switching; loss functions; conjugate prior; hierarchical prior;
D O I
10.1023/B:STCO.0000039481.32211.5a
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We compare EM, SEM, and MCMC algorithms to estimate the parameters of the Gaussian mixture model. We focus on problems in estimation arising from the likelihood function having a sharp ridge or saddle points. We use both synthetic and empirical data with those features. The comparison includes Bayesian approaches with different prior specifications and various procedures to deal with label switching. Although the solutions provided by these stochastic algorithms are more often degenerate, we conclude that SEM and MCMC may display faster convergence and improve the ability to locate the global maximum of the likelihood function.
引用
收藏
页码:323 / 332
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 1985, Computational Statistics Quarterly, DOI DOI 10.1155/2010/874592
[2]   Computational and inferential difficulties with mixture posterior distributions. [J].
Celeux, G ;
Hurn, M ;
Robert, CP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (451) :957-970
[3]   Stochastic versions of the EM algorithm: An experimental study in the mixture case [J].
Celeux, G ;
Chauveau, D ;
Diebolt, J .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 55 (04) :287-314
[4]  
Celeux G., 1998, COMPSTAT 98, P227, DOI [10.1007/978-3-662-01131-7_26, DOI 10.1007/978-3-662-01131-7_26]
[5]   Markov chain Monte Carlo convergence diagnostics: A comparative review [J].
Cowles, MK ;
Carlin, BP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (434) :883-904
[6]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[7]  
DIEBOLT J, 1994, J ROY STAT SOC B MET, V56, P363
[8]  
Diebolt J., 1996, Markov Chain Monte Carlo in practice, P259
[9]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[10]  
Fletcher R., 1980, Practical Methods of Optimization