Mesoscopic description of reactions for anomalous diffusion:: a case study

被引:40
作者
Schmidt, M. G. W.
Sagues, F.
Sokolov, I. M.
机构
[1] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[2] Univ Barcelona, Dept Quim Fis, E-08028 Barcelona, Spain
关键词
D O I
10.1088/0953-8984/19/6/065118
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Reaction-diffusion equations deliver a versatile tool for the description of reactions in inhomogeneous systems under the assumption that the characteristic reaction scales and the scales of the inhomogeneities in the reactant concentrations separate. In the present work, we discuss the possibilities of a generalization of reaction-diffusion equations to the case of anomalous diffusion described in terms of continuous-time random walks with decoupled step length and waiting time probability densities, the first being Gaussian or Levy, the second one being an exponential or a power law lacking the first moment. We consider a special case of an irreversible or reversible A -> B conversion and show that only in the Markovian case of an exponential waiting time distribution can the diffusion term and the reaction term be decoupled. In all other cases, the properties of the reaction affect the transport operator, so the form of the corresponding reaction-anomalous diffusion equations does not closely follow the form of the usual reaction diffusion equations.
引用
收藏
页数:9
相关论文
共 26 条
[1]   Particle dispersion on rapidly folding random heteropolymers [J].
Brockmann, D ;
Geisel, T .
PHYSICAL REVIEW LETTERS, 2003, 91 (04) :1-048303
[2]   Levy flights in inhomogeneous media [J].
Brockmann, D ;
Geisel, T .
PHYSICAL REVIEW LETTERS, 2003, 90 (17) :4
[3]   Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach [J].
del-Castillo-Negrete, D ;
Carreras, BA ;
Lynch, VE .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[4]  
GORENFLO R, 2000, PROBLEMS MATH PHYS, P120
[5]   Turing pattern formation in fractional activator-inhibitor systems [J].
Henry, BI ;
Langlands, TAM ;
Wearne, SL .
PHYSICAL REVIEW E, 2005, 72 (02)
[6]   Existence of Turing instabilities in a two-species fractional reaction-diffusion system [J].
Henry, BI ;
Wearne, SL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2002, 62 (03) :870-887
[7]   Fractional reaction-diffusion [J].
Henry, BI ;
Wearne, SL .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) :448-455
[8]  
HENRY BI, 2006, COMMUNICATION
[9]   Optimal target search on a fast-folding polymer chain with volume exchange -: art. no. 260603 [J].
Lomholt, MA ;
Ambjörnsson, T ;
Metzler, R .
PHYSICAL REVIEW LETTERS, 2005, 95 (26)
[10]   Superfast front propagation in reactive systems with non-Gaussian diffusion [J].
Mancinelli, R ;
Vergni, D ;
Vulpiani, A .
EUROPHYSICS LETTERS, 2002, 60 (04) :532-538