Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation

被引:1702
作者
Mohiuddin, T. M. G. [1 ]
Lombardo, A. [2 ]
Nair, R. R. [1 ]
Bonetti, A. [2 ]
Savini, G. [2 ]
Jalil, R. [1 ]
Bonini, N. [3 ]
Basko, D. M. [4 ,5 ]
Galiotis, C. [6 ,7 ]
Marzari, N. [3 ]
Novoselov, K. S. [1 ]
Geim, A. K. [1 ]
Ferrari, A. C. [2 ]
机构
[1] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[2] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Grenoble 1, Lab Phys & Modelisat Mileux Condenses, F-38042 Grenoble, France
[5] CNRS, F-38042 Grenoble, France
[6] Univ Patras, FORTH, ICE HT, Patras 26504, Greece
[7] Univ Patras, Dept Mat Sci, Patras 26504, Greece
基金
欧洲研究理事会;
关键词
crystal orientation; graphene; Gruneisen coefficient; light polarisation; nanoelectronics; Raman spectra; red shift; CARBON NANOTUBES; GRAPHITE; FIBERS; SCATTERING; 1ST-ORDER; ELECTRON; SPECTRA; STRESS; PHASE; FIELD;
D O I
10.1103/PhysRevB.79.205433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We uncover the constitutive relation of graphene and probe the physics of its optical phonons by studying its Raman spectrum as a function of uniaxial strain. We find that the doubly degenerate E-2g optical mode splits in two components: one polarized along the strain and the other perpendicular. This splits the G peak into two bands, which we call G(+) and G(-), by analogy with the effect of curvature on the nanotube G peak. Both peaks redshift with increasing strain and their splitting increases, in excellent agreement with first-principles calculations. Their relative intensities are found to depend on light polarization, which provides a useful tool to probe the graphene crystallographic orientation with respect to the strain. The 2D and 2D(') bands also redshift but do not split for small strains. We study the Gruneisen parameters for the phonons responsible for the G, D, and D-' peaks. These can be used to measure the amount of uniaxial or biaxial strain, providing a fundamental tool for nanoelectronics, where strain monitoring is of paramount importance.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562
[3]   Theory of resonant multiphonon Raman scattering in graphene (vol 78, 125418, 2008) [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2009, 79 (12)
[4]   Theory of resonant multiphonon Raman scattering in graphene [J].
Basko, D. M. .
PHYSICAL REVIEW B, 2008, 78 (12)
[5]   Making graphene visible [J].
Blake, P. ;
Hill, E. W. ;
Castro Neto, A. H. ;
Novoselov, K. S. ;
Jiang, D. ;
Yang, R. ;
Booth, T. J. ;
Geim, A. K. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[6]   Phonon anharmonicities in graphite and graphene [J].
Bonini, Nicola ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[7]   Elasticity of single-crystalline graphite: Inelastic x-ray scattering study [J].
Bosak, Alexey ;
Krisch, Michael ;
Mohr, Marcel ;
Maultzsch, Janina ;
Thomsen, Christian .
PHYSICAL REVIEW B, 2007, 75 (15)
[8]   Influence of the atomic structure on the Raman spectra of graphite edges -: art. no. 247401 [J].
Cançado, LG ;
Pimenta, MA ;
Neves, BRA ;
Dantas, MSS ;
Jorio, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (24)
[9]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[10]   Rayleigh imaging of graphene and graphene layers [J].
Casiraghi, C. ;
Hartschuh, A. ;
Lidorikis, E. ;
Qian, H. ;
Harutyunyan, H. ;
Gokus, T. ;
Novoselov, K. S. ;
Ferrari, A. C. .
NANO LETTERS, 2007, 7 (09) :2711-2717