Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy

被引:33
作者
Alloyeau, D. [1 ]
Freitag, B. [2 ]
Dag, S. [3 ]
Wang, Lin W. [3 ]
Kisielowski, C. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[2] FEI Co, NL-5600 KA Eindhoven, Netherlands
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Sci Comp Grp, Computat Res Div, Berkeley, CA 94720 USA
关键词
elemental semiconductors; germanium; interstitials; transmission electron microscopy; TOTAL-ENERGY CALCULATIONS; IRRADIATION-INDUCED DEFECTS; INTRINSIC POINT-DEFECTS; AB-INITIO; MOLECULAR-DYNAMICS; SEMICONDUCTORS; IDENTIFICATION; VACANCIES; GE;
D O I
10.1103/PhysRevB.80.014114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report the formation and direct observation of self-interstitials in surface proximity of an elemental semiconductor by exploiting subthreshold effects in a new generation of aberration-corrected transmission electron microscopes. We find that the germanium interstitial atoms reside close to hexagonal, tetragonal, and S-interstitial sites. Using phase-contrast microscopy, we demonstrate that the three-dimensional position of interstitial atoms can be determined from contrast analysis, with subnanometer precision along the electron-beam direction. Comparison with a first-principles study suggests a strong influence of the surface proximity or a positively charged interstitial. More generally, our investigation demonstrates that imaging of single atom can now be utilized to directly visualize single-defect formation and migration. These high-resolution electron microscopy studies are applicable to a wide range of materials since the reported noise level of the images even allows the detection of single-light atoms.
引用
收藏
页数:6
相关论文
共 37 条
[1]   Comparing electron tomography and HRTEM slicing methods as tools to measure the thickness of nanoparticles [J].
Alloyeau, D. ;
Ricolleau, C. ;
Oikawa, T. ;
Langlois, C. ;
Le Bouar, Y. ;
Loiseau, A. .
ULTRAMICROSCOPY, 2009, 109 (07) :788-796
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Identification of the hydrogen-saturated self-interstitials in silicon and germanium [J].
Budde, M ;
Nielsen, BB ;
Leary, P ;
Goss, J ;
Jones, R ;
Briddon, PR ;
Oberg, S ;
Breuer, SJ .
PHYSICAL REVIEW B, 1998, 57 (08) :4397-4412
[4]   First-principles study of the diffusion mechanisms of the self-interstitial in germanium [J].
Carvalho, A. ;
Jones, R. ;
Goss, J. P. ;
Janke, C. ;
Oberg, S. ;
Briddon, P. R. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (13)
[5]   Self-interstitial in germanium [J].
Carvalho, A. ;
Jones, R. ;
Janke, C. ;
Goss, J. P. ;
Briddon, P. R. ;
Coutinho, J. ;
Oeberg, S. .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[6]   Self-interstitial defect in germanium [J].
da Silva, AJR ;
Janotti, A ;
Fazzio, A ;
Baierle, RJ ;
Mota, R .
PHYSICAL REVIEW B, 2000, 62 (15) :9903-9906
[7]   EXAFS Debye-Waller factor and thermal vibrations of crystals [J].
Dalba, G ;
Fornasini, P .
JOURNAL OF SYNCHROTRON RADIATION, 1997, 4 :243-255
[8]  
DESSEAUXTHIBAUL.J, 1983, MICR SEM MAT 1983 P, V67, P71
[9]   Atomic-Resolution Imaging with a Sub-50-pm Electron Probe [J].
Erni, Rolf ;
Rossell, Marta D. ;
Kisielowski, Christian ;
Dahmen, Ulrich .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[10]   Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy [J].
Haesslein, H ;
Sielemann, R ;
Zistl, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (12) :2626-2629