Wnt2/2b and β-Catenin Signaling Are Necessary and Sufficient to Specify Lung Progenitors in the Foregut

被引:337
作者
Goss, Ashley M. [1 ,2 ]
Tian, Ying [1 ,3 ]
Tsukiyama, Tadasuke [4 ]
Cohen, Ethan David [1 ,3 ]
Zhou, Diane [1 ,3 ]
Lu, Min Min [1 ,3 ]
Yamaguchi, Terry P. [4 ]
Morrisey, Edward E. [1 ,2 ,3 ,5 ]
机构
[1] Univ Penn, Dept Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
[3] Univ Penn, Cardiovasc Inst, Philadelphia, PA 19104 USA
[4] NCI, Canc & Dev Biol Lab, NIH, Frederick, MD 21702 USA
[5] Univ Penn, Inst Regenerat Med, Philadelphia, PA 19104 USA
基金
美国国家卫生研究院;
关键词
ENHANCER-BINDING PROTEIN; LIVER GROWTH; WNT SIGNALS; MORPHOGENESIS; GENE; EPITHELIUM; PROLIFERATION; SPECIFICATION; DELETION; CELLS;
D O I
10.1016/j.devcel.2009.06.005
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Patterning of the primitive foregut promotes appropriate organ specification along its anterior-posterior axis. However, the molecular pathways specifying foregut endoderm progenitors are poorly understood. We show here that Wnt2/2b signaling is required to specify lung endoderm progenitors within the anterior foregut. Embryos lacking Wnt2/2b expression exhibit complete lung agenesis and do not express Nkx2.1, the earliest marker of the lung endoderm. In contrast, other foregut endoderm-derived organs, including the thyroid, liver, and pancreas, are correctly specified. The phenotype observed is recapitulated by an endoderm-restricted deletion of beta-catenin, demonstrating that Wnt2/2b signaling through the canonical Writ pathway is required to specify lung endoderm progenitors within the foregut. Moreover, activation of canonical Wnt/beta-catenin signaling results in the reprogramming of esophagus and stomach endoderm to a lung endoderm progenitor fate. Together, these data reveal that canonical Wnt2/2b signaling is required for the specification of lung endoderm progenitors in the developing foregut.
引用
收藏
页码:290 / 298
页数:9
相关论文
共 41 条
[31]   Wnt/β-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal-distal patterning in the lung [J].
Shu, WG ;
Guttentag, S ;
Wang, ZS ;
Andl, T ;
Ballard, P ;
Lu, MM ;
Piccolo, S ;
Birchmeier, W ;
Whitsett, JA ;
Millar, SE ;
Morrisey, EE .
DEVELOPMENTAL BIOLOGY, 2005, 283 (01) :226-239
[32]   Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors [J].
Shu, WG ;
Yang, HH ;
Zhang, LL ;
Lu, MM ;
Morrisey, EE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27488-27497
[33]  
Shu WG, 2002, DEVELOPMENT, V129, P4831
[34]   Conditional deletion of β-catenin reveals its role in liver growth and regeneration [J].
Tan, Xinping ;
Behari, Jaideep ;
Cieply, Benjamin ;
Michalopoulos, George K. ;
Monga, Satdarshan P. S. .
GASTROENTEROLOGY, 2006, 131 (05) :1561-1572
[35]   Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent β-catenin degradation [J].
Topol, L ;
Jiang, XY ;
Choi, H ;
Garrett-Beal, L ;
Carolan, PJ ;
Yang, YZ .
JOURNAL OF CELL BIOLOGY, 2003, 162 (05) :899-908
[36]   The WNT7b promoter is regulated by TTF-1, GATA6, and Foxa2 in lung epithelium [J].
Weidenfeld, J ;
Shu, WG ;
Zhang, LL ;
Millar, SE ;
Morrisey, EE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (23) :21061-21070
[37]   An FGF-WNT gene regulatory network controls lung mesenchyme development [J].
Yin, Yongjun ;
White, Andrew C. ;
Huh, Sung-Ho ;
Hilton, Matthew J. ;
Kanazawa, Hidemi ;
Long, Fanxin ;
Ornitz, David M. .
DEVELOPMENTAL BIOLOGY, 2008, 319 (02) :426-436
[38]  
Yuan BB, 2000, DEV DYNAM, V217, P180, DOI 10.1002/(SICI)1097-0177(200002)217:2<180::AID-DVDY5>3.0.CO
[39]  
2-3
[40]   Structure and expression of Wnt13, a novel mouse Wnt2 related gene [J].
Zakin, LDJ ;
Mazan, S ;
Maury, M ;
Martin, N ;
Guénet, JL ;
Brûlet, P .
MECHANISMS OF DEVELOPMENT, 1998, 73 (01) :107-116