Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D LixFePO4 Nanoparticles from Surface Wetting and Coherency Strain

被引:52
作者
Welland, Michael J. [1 ]
Karpeyev, Dmitry [2 ]
O'Connor, Devin T. [3 ]
Heinonen, Olle [2 ,4 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[3] Northwestern Univ, McCormick Sch Engn, Evanston, IL 60208 USA
[4] Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
关键词
Li-ion battery; LiFePO4; phase-field model; coherency strain; interface morphology; surface wetting; nanoparticles; RECHARGEABLE LITHIUM BATTERIES; SOLID-SOLUTION PHASES; LI-ION BATTERIES; LIFEPO4; NANOPARTICLES; SEPARATION DYNAMICS; NANOSCALE OLIVINES; ROOM-TEMPERATURE; PARTICLE-SIZE; MODEL; TRANSFORMATION;
D O I
10.1021/acsnano.5b02555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study the mesoscopic effects which modify phase-segregation in LixFePO4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3 to 40 nm and examine the equilibrium microstructure and voltage profiles as they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. We find that the miscibility gap vanishes for particles of radius similar to 5 nm, and the solubility limits change with overall particle lithiation. Surface wetting stabilizes minority phases by aligning them with energetically beneficial facets. The equilibrium voltage profile is modified by these effects in magnitude, and the length and slope of the voltage plateau during two-phase coexistence.
引用
收藏
页码:9757 / 9771
页数:15
相关论文
共 55 条
[31]   IR Near-Field Spectroscopy and Imaging of Single LixFePO4 Microcrystals [J].
Lucas, I. T. ;
McLeod, A. S. ;
Syzdek, J. S. ;
Middlemiss, D. S. ;
Grey, C. P. ;
Basov, D. N. ;
Kostecki, R. .
NANO LETTERS, 2015, 15 (01) :1-7
[32]  
Malik R, 2011, NAT MATER, V10, P587, DOI [10.1038/NMAT3065, 10.1038/nmat3065]
[33]   Elastic properties of olivine LixFePO4 from first principles [J].
Maxisch, Thomas ;
Ceder, Gerband .
PHYSICAL REVIEW B, 2006, 73 (17)
[34]   Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1-xMPO4 (M = Fe, Mn) [J].
Meethong, Nonglak ;
Kao, Yu-Hua ;
Tang, Ming ;
Huang, Hsiao-Ying ;
Carter, W. Craig ;
Chiang, Yet-Ming .
CHEMISTRY OF MATERIALS, 2008, 20 (19) :6189-6198
[35]   Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4 [J].
Meethong, Nonglak ;
Huang, Hsiao-Ying Shadow ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (05) :A134-A138
[36]   Size-dependent elastic properties of nanosized structural elements [J].
Miller, RE ;
Shenoy, VB .
NANOTECHNOLOGY, 2000, 11 (03) :139-147
[37]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[38]   Study of the Li-insertion/extraction process in LiFePO4/FePO4 [J].
Ramana, C. V. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. ;
Zaghib, K. .
JOURNAL OF POWER SOURCES, 2009, 187 (02) :555-564
[39]   Composition, structure, and stability of RuO2(110) as a function of oxygen pressure -: art. no. 035406 [J].
Reuter, K ;
Scheffler, M .
PHYSICAL REVIEW B, 2002, 65 (03) :1-11
[40]   Intercalation dynamics in rechargeable battery materials:: General theory and phase-transformation waves in LiFePO4 [J].
Singh, Gogi K. ;
Ceder, Gerbrand ;
Bazant, Martin Z. .
ELECTROCHIMICA ACTA, 2008, 53 (26) :7599-7613