Miscibility Gap Closure, Interface Morphology, and Phase Microstructure of 3D LixFePO4 Nanoparticles from Surface Wetting and Coherency Strain

被引:52
作者
Welland, Michael J. [1 ]
Karpeyev, Dmitry [2 ]
O'Connor, Devin T. [3 ]
Heinonen, Olle [2 ,4 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[3] Northwestern Univ, McCormick Sch Engn, Evanston, IL 60208 USA
[4] Northwestern Argonne Inst Sci & Engn, Evanston, IL 60208 USA
关键词
Li-ion battery; LiFePO4; phase-field model; coherency strain; interface morphology; surface wetting; nanoparticles; RECHARGEABLE LITHIUM BATTERIES; SOLID-SOLUTION PHASES; LI-ION BATTERIES; LIFEPO4; NANOPARTICLES; SEPARATION DYNAMICS; NANOSCALE OLIVINES; ROOM-TEMPERATURE; PARTICLE-SIZE; MODEL; TRANSFORMATION;
D O I
10.1021/acsnano.5b02555
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We study the mesoscopic effects which modify phase-segregation in LixFePO4 nanoparticles using a multiphysics phase-field model implement on a high performance cluster. We simulate 3D spherical particles of radii from 3 to 40 nm and examine the equilibrium microstructure and voltage profiles as they depend on size and overall lithiation. The model includes anisotropic, concentration-dependent elastic moduli, misfit strain, and facet dependent surface wetting within a Cahn-Hilliard formulation. We find that the miscibility gap vanishes for particles of radius similar to 5 nm, and the solubility limits change with overall particle lithiation. Surface wetting stabilizes minority phases by aligning them with energetically beneficial facets. The equilibrium voltage profile is modified by these effects in magnitude, and the length and slope of the voltage plateau during two-phase coexistence.
引用
收藏
页码:9757 / 9771
页数:15
相关论文
共 55 条
[21]   Phase field theory of heterogeneous crystal nucleation [J].
Granasy, Laszlo ;
Pusztai, Tamas ;
Saylor, David ;
Warren, James A. .
PHYSICAL REVIEW LETTERS, 2007, 98 (03)
[22]   Elastically constrained phase-separation dynamics competing with the charge process in the LiFePO4/FePO4 system [J].
Ichitsubo, Tetsu ;
Tokuda, Kazuya ;
Yagi, Shunsuke ;
Kawamori, Makoto ;
Kawaguchi, Tomoya ;
Doi, Takayuki ;
Oishi, Masatsugu ;
Matsubara, Eiichiro .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (07) :2567-2577
[23]   A method for calculating surface stress and surface elastic constants by molecular dynamics: application to the surface of crystal and amorphous silicon [J].
Izumi, S ;
Hara, S ;
Kumagai, I ;
Sakai, S .
THIN SOLID FILMS, 2004, 467 (1-2) :253-260
[24]   Surface effects on electrochemical properties of nano-sized LiFePO4 [J].
Julien, C. M. ;
Mauger, A. ;
Zaghib, K. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (27) :9955-9968
[25]  
Khachaturyan A. G., 2008, DOVER BOOKS ENG SERI
[26]  
Kirby R. C., 2012, LECT NOTES COMPUTATI, V84
[27]   A compiler for variational forms [J].
Kirby, Robert C. ;
Logg, Anders .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (03) :417-444
[28]   Isolation of Solid Solution Phases in Size-Controlled LixFePO4 at Room Temperature [J].
Kobayashi, Genki ;
Nishimura, Shn-ichi ;
Park, Min-Sik ;
Kanno, Ryoji ;
Yashima, Masatomo ;
Ida, Takashi ;
Yamada, Atsuo .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (03) :395-403
[29]   Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy [J].
Laffont, L. ;
Delacourt, C. ;
Gibot, P. ;
Wu, M. Yue ;
Kooyman, P. ;
Masquelier, C. ;
Tarascon, J. Marie .
CHEMISTRY OF MATERIALS, 2006, 18 (23) :5520-5529
[30]   Two-phase transition of Li-intercalation compounds in Li-ion batteries [J].
Li, De ;
Zhou, Haoshen .
MATERIALS TODAY, 2014, 17 (09) :451-463