Understanding the glacial methane cycle

被引:41
作者
Hopcroft, Peter O. [1 ,2 ]
Valdes, Paul J. [1 ,2 ]
O'Connor, Fiona M. [3 ]
Kaplan, Jed O. [4 ]
Beerling, David J. [5 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol Res Initiat Dynam Global Environm, Univ Rd, Bristol BS8 1SS, Avon, England
[2] Univ Bristol, Cabot Inst, Univ Rd, Bristol BS8 1SS, Avon, England
[3] Met Off Hadley Ctr, FitzRoy Rd, Exeter EX1 3PB, Devon, England
[4] Univ Lausanne, Inst Earth Surface Dynam, Geopolis Bldg, CH-1015 Lausanne, Switzerland
[5] Univ Sheffield, Dept Anim & Plant Sci, Alfred Denny Bldg, Sheffield S10 2TN, S Yorkshire, England
基金
欧洲研究理事会;
关键词
ENVIRONMENT SIMULATOR JULES; GLOBAL WETLAND EXTENT; OXIDATIVE CAPACITY; ISOPRENE EMISSIONS; MODEL DESCRIPTION; CLIMATE FEEDBACK; PRESENT STATE; FIRE REGIMES; PART; MAXIMUM;
D O I
10.1038/ncomms14383
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Atmospheric methane (CH4) varied with climate during the Quaternary, rising from a concentration of 375 p.p.b.v. during the last glacial maximum (LGM) 21,000 years ago, to 680 p.p.b.v. at the beginning of the industrial revolution. However, the causes of this increase remain unclear; proposed hypotheses rely on fluctuations in either the magnitude of CH4 sources or CH4 atmospheric lifetime, or both. Here we use an Earth System model to provide a comprehensive assessment of these competing hypotheses, including estimates of uncertainty. We show that in this model, the global LGM CH4 source was reduced by 28-46%, and the lifetime increased by 2-8%, with a best-estimate LGM CH4 concentration of 463-480 p.p.b.v. Simulating the observed LGM concentration requires a 46-49% reduction in sources, indicating that we cannot reconcile the observed amplitude. This highlights the need for better understanding of the effects of low CO2 and cooler climate on wetlands and other natural CH4 sources.
引用
收藏
页数:10
相关论文
共 80 条
  • [1] Uncertainties in isoprene photochemistry and emissions: implications for the oxidative capacity of past and present atmospheres and for climate forcing agents
    Achakulwisut, P.
    Mickley, L. J.
    Murray, L. T.
    Tai, A. P. K.
    Kaplan, J. O.
    Alexander, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2015, 15 (14) : 7977 - 7998
  • [2] Armante C., 2009, TECH REP
  • [3] NGRIP CH4 concentration from 120 to 10 kyr before present and its relation to a δ15N temperature reconstruction from the same ice core
    Baumgartner, M.
    Kindler, P.
    Eicher, O.
    Floch, G.
    Schilt, A.
    Schwander, J.
    Spahni, R.
    Capron, E.
    Chappellaz, J.
    Leuenberger, M.
    Fischer, H.
    Stocker, T. F.
    [J]. CLIMATE OF THE PAST, 2014, 10 (02) : 903 - 920
  • [4] The Joint UK Land Environment Simulator (JULES), model description - Part 1: Energy and water fluxes
    Best, M. J.
    Pryor, M.
    Clark, D. B.
    Rooney, G. G.
    Essery, R. L. H.
    Menard, C. B.
    Edwards, J. M.
    Hendry, M. A.
    Porson, A.
    Gedney, N.
    Mercado, L. M.
    Sitch, S.
    Blyth, E.
    Boucher, O.
    Cox, P. M.
    Grimmond, C. S. B.
    Harding, R. J.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) : 677 - 699
  • [5] Reduction of the temperature sensitivity of minerotrophic fen methane emissions by simulated glacial atmospheric carbon dioxide starvation
    Boardman, Carl P.
    Gauci, Vincent
    Fox, Andrew
    Blake, Stephen
    Beerling, David J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2013, 118 (02) : 462 - 470
  • [6] Contrasting wetland CH4 emission responses to simulated glacial atmospheric CO2 in temperate bogs and fens
    Boardman, Carl P.
    Gauci, Vincent
    Watson, Jonathan S.
    Blake, Stephen
    Beerling, David J.
    [J]. NEW PHYTOLOGIST, 2011, 192 (04) : 898 - 911
  • [7] Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum -: Part 1:: experiments and large-scale features
    Braconnot, P.
    Otto-Bliesner, B.
    Harrison, S.
    Joussaume, S.
    Peterchmitt, J.-Y.
    Abe-Ouchi, A.
    Crucifix, M.
    Driesschaert, E.
    Fichefet, Th.
    Hewitt, C. D.
    Kageyama, M.
    Kitoh, A.
    Laine, A.
    Loutre, M.-F.
    Marti, O.
    Merkel, U.
    Ramstein, G.
    Valdes, P.
    Weber, S. L.
    Yu, Y.
    Zhao, Y.
    [J]. CLIMATE OF THE PAST, 2007, 3 (02) : 261 - 277
  • [8] Large contribution of natural aerosols to uncertainty in indirect forcing
    Carslaw, K. S.
    Lee, L. A.
    Reddington, C. L.
    Pringle, K. J.
    Rap, A.
    Forster, P. M.
    Mann, G. W.
    Spracklen, D. V.
    Woodhouse, M. T.
    Regayre, L. A.
    Pierce, J. R.
    [J]. NATURE, 2013, 503 (7474) : 67 - +
  • [9] The Joint UK Land Environment Simulator (JULES), model description - Part 2: Carbon fluxes and vegetation dynamics
    Clark, D. B.
    Mercado, L. M.
    Sitch, S.
    Jones, C. D.
    Gedney, N.
    Best, M. J.
    Pryor, M.
    Rooney, G. G.
    Essery, R. L. H.
    Blyth, E.
    Boucher, O.
    Harding, R. J.
    Huntingford, C.
    Cox, P. M.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (03) : 701 - 722
  • [10] Development and evaluation of an Earth-System model-HadGEM2
    Collins, W. J.
    Bellouin, N.
    Doutriaux-Boucher, M.
    Gedney, N.
    Halloran, P.
    Hinton, T.
    Hughes, J.
    Jones, C. D.
    Joshi, M.
    Liddicoat, S.
    Martin, G.
    O'Connor, F.
    Rae, J.
    Senior, C.
    Sitch, S.
    Totterdell, I.
    Wiltshire, A.
    Woodward, S.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) : 1051 - 1075