On the nature of ion implantation induced dislocation loops in 4H-silicon carbide

被引:43
作者
Persson, POÅ [1 ]
Hultman, L
Janson, MS
Hallén, A
Yakimova, R
Panknin, D
Skorupa, W
机构
[1] Linkoping Univ, Dept Phys, Thin Film Phys Div, S-58183 Linkoping, Sweden
[2] Royal Inst Technol, S-16440 Kista, Sweden
[3] Linkoping Univ, Dept Phys, Div Sci Mat, S-58183 Linkoping, Sweden
[4] FWIM Forschungszentrum Rossendorf, D-01474 Schoenfeld Weissig, Germany
关键词
D O I
10.1063/1.1499749
中图分类号
O59 [应用物理学];
学科分类号
摘要
Transmission electron microscopy was used to investigate B-11, C-12, N-14, Al-27, Si-28, and Ar-37 ion-implanted 4H-SiC epilayers and subsequent defect formation after high temperature annealing. During the annealing process extrinsic dislocation loops of interstitial type are formed on the SiC basal plane with a depth distribution roughly corresponding to the distribution of the implanted ions. The investigation reveals that in samples where the implanted ions are substituting for a position in the silicon sublattice, generating an excess of interstitial silicon, the dislocation loops are more readily formed than in a sample implanted with an ion substituting for carbon. (C) 2002 American Institute of Physics.
引用
收藏
页码:2501 / 2505
页数:5
相关论文
共 27 条
[1]   COMPARISON OF 6H-SIC, 3C-SIC, AND SI FOR POWER DEVICES [J].
BHATNAGAR, M ;
BALIGA, BJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :645-655
[2]   Ostwald ripening of end-of-range defects in silicon [J].
Bonafos, C ;
Mathiot, D ;
Claverie, A .
JOURNAL OF APPLIED PHYSICS, 1998, 83 (06) :3008-3017
[3]   Evolution of helium platelets and associated dislocation loops in α-SiC [J].
Chen, J ;
Jung, P ;
Trinkaus, H .
PHYSICAL REVIEW LETTERS, 1999, 82 (13) :2709-2712
[4]   THIN-FILM DEPOSITION AND MICROELECTRONIC AND OPTOELECTRONIC DEVICE FABRICATION AND CHARACTERIZATION IN MONOCRYSTALLINE ALPHA AND BETA SILICON-CARBIDE [J].
DAVIS, RF ;
KELNER, G ;
SHUR, M ;
PALMOUR, JW ;
EDMOND, JA .
PROCEEDINGS OF THE IEEE, 1991, 79 (05) :677-701
[5]   TEM studies of the defects introduced by ion implantation in SiC [J].
Grisolia, J ;
de Mauduit, B ;
Gimbert, J ;
Billon, T ;
Ben Assayag, G ;
Bourgerette, C ;
Claverie, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 147 (1-4) :62-67
[6]   Ion implantation of silicon carbide [J].
Hallén, A ;
Janson, MS ;
Kuznetsov, AY ;
Åberg, D ;
Linnarsson, MK ;
Svensson, BG ;
Persson, PO ;
Carlsson, FHC ;
Storasta, L ;
Bergman, JP ;
Sridhara, SG ;
Zhang, Y .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2002, 186 :186-194
[7]   Ion implantation and annealing effects in silicon carbide [J].
Heera, V ;
Skorupa, W .
MATERIALS MODIFICATION AND SYNTHESIS BY ION BEAM PROCESSING, 1997, 438 :241-252
[8]   Crystallization and surface erosion of SiC by ion irradiation at elevated temperatures [J].
Heera, V ;
Stoemenos, J ;
Kögler, R ;
Voelskow, M ;
Skorupa, W .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (03) :1378-1386
[9]   Dose dependence of microstructural evolution in oxygen-ion-implanted silicon carbide [J].
Ishimaru, M ;
Sickafus, KE .
APPLIED PHYSICS LETTERS, 1999, 75 (10) :1392-1394
[10]   Multiaxial channeling study of disorder accumulation and recovery in gold-irradiated 6H-SiC -: art. no. 125206 [J].
Jiang, W ;
Weber, WJ .
PHYSICAL REVIEW B, 2001, 64 (12)