Controlled epitaxial growth modes of ZnO nanostructures using different substrate crystal planes

被引:41
作者
Hong, Young Joon [1 ,2 ]
Yoo, Jinkyoung [1 ,2 ]
Doh, Yong-Joo [1 ,2 ]
Kang, Suk Hoon [3 ]
Kong, Ki-jeong [4 ]
Kim, Miyoung [3 ]
Lee, Dong Ryeol [5 ]
Oh, Kyu Hwan [3 ]
Yi, Gyu-Chul [1 ,2 ]
机构
[1] POSTECH, Ctr Semicond Nanorods, Natl Creat Res Initiat, Pohang 790784, Gyeongbuk, South Korea
[2] POSTECH, Dept Mat Sci & Engn, Pohang 790784, Gyeongbuk, South Korea
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151744, South Korea
[4] Korea Res Inst Chem Technol, Taejon 305600, South Korea
[5] Soongsil Univ, Dept Phys, Seoul 156743, South Korea
关键词
VAPOR-PHASE EPITAXY; SEMICONDUCTOR NANOWIRES; NANORODS; FABRICATION; NANOTUBES; FILMS;
D O I
10.1039/b816034a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A combined experimental and theoretical investigation has clarified the nanometre-scale vapour-phase epitaxial growth of ZnO nanostructures on different crystal planes of GaN substrates. Under typical growth conditions, ZnO nanorods grow perpendicular to the GaN(0001) plane, but thin flat films form on GaN(10 (1) over bar1), (10 (1) over bar0) and (1 (1) over bar 20). High-resolution X-ray diffraction data and transmission electron microscopy confirm the heteroepitaxial relationship between the ZnO nanostructures and GaN substrates. These results are consistent with first-principles theoretical calculations, indicating that the ZnO surface morphologies are mainly influenced by highly anisotropic GaN/ZnO interface energies. As a result of the large surface energy gradients, different ZnO nanostructures grow by preferential heteroepitaxial growth on different facets of regular GaN micropattern arrays. High-resolution transmission electron microscopy shows that ZnO nanotubes develop epitaxially on micropyramid tips, presumably as a result of enhanced nucleation and growth about the edges.
引用
收藏
页码:941 / 947
页数:7
相关论文
共 30 条
[1]   Synergetic nanowire growth [J].
Borgstrom, Magnus T. ;
Immink, George ;
Ketelaars, Bas ;
Algra, Rienk ;
Bakkers, Erik P. A. M. .
NATURE NANOTECHNOLOGY, 2007, 2 (09) :541-544
[2]   Semiconductor nanowires: From self-organization to patterned growth [J].
Fan, HJ ;
Werner, P ;
Zacharias, M .
SMALL, 2006, 2 (06) :700-717
[3]   Monocrystalline spinel nanotube fabrication based on the Kirkendall effect [J].
Fan, Hong Jin ;
Knez, Mato ;
Scholz, Roland ;
Nielsch, Kornelius ;
Pippel, Eckhard ;
Hesse, Dietrich ;
Zacharias, Margit ;
Goesele, Ulrich .
NATURE MATERIALS, 2006, 5 (08) :627-631
[4]   Kinetics of mesa overlayer growth: Climbing of adatoms onto the mesa top [J].
Han, Yong ;
Liu, Feng ;
Li, Shao-Chun ;
Jia, Jin-Feng ;
Xue, Qi-Kun ;
Lee, Byeong-Joo .
APPLIED PHYSICS LETTERS, 2008, 92 (02)
[5]   ZnO nanowire growth and devices [J].
Heo, YW ;
Norton, DP ;
Tien, LC ;
Kwon, Y ;
Kang, BS ;
Ren, F ;
Pearton, SJ ;
LaRoche, JR .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2004, 47 (1-2) :1-47
[6]   Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy [J].
Heo, YW ;
Varadarajan, V ;
Kaufman, M ;
Kim, K ;
Norton, DP ;
Ren, F ;
Fleming, PH .
APPLIED PHYSICS LETTERS, 2002, 81 (16) :3046-3048
[7]  
HERMAN MA, 2004, EPITAXY PHYS PRINCIP, P93108
[8]   The controlled growth of GaN nanowires [J].
Hersee, Stephen D. ;
Sun, Xinyu ;
Wang, Xin .
NANO LETTERS, 2006, 6 (08) :1808-1811
[9]   Control and characterization of ZnO/GaN heterointerfaces in plasma-assisted MBE-grown ZnO films on GaN/Al2O3 [J].
Hong, SK ;
Ko, HJ ;
Chen, YF ;
Hanada, T ;
Yao, T .
APPLIED SURFACE SCIENCE, 2000, 159 :441-448
[10]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899