Strain-compensated GaInNAs structures for 1.3-μm lasers

被引:32
作者
Jouhti, T [1 ]
Peng, CS [1 ]
Pavelescu, EM [1 ]
Konttinen, J [1 ]
Gomes, LA [1 ]
Okhotnikov, OG [1 ]
Pessa, M [1 ]
机构
[1] Tampere Univ Technol, Optoelect Res Ctr, FIN-33101 Tampere, Finland
基金
芬兰科学院;
关键词
GaInNAs; semiconductor laser; molecular beam epitaxy;
D O I
10.1109/JSTQE.2002.801671
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaAs-based dilute nitride lasers are potential light sources for future optical fiber communication systems at the wavelength of 1.3 mum. In this paper we discuss the results of studies of optimization of the growth conditions and active regions of the GaAs-based lasers. To this end, a series of samples were grown using the molecular beam epitaxy technique. The active regions consisted of quantum wells, strain-compensating layers, and strain-mediating layers. They were characterized by photoluminescence and double crystal X-ray diffraction methods. The optical properties were very much affected by a choice of growth conditions, details of the quantum wells, and postgrowth thermal treatment. Preliminary results on diode-pumped vertical-cavity surface emitting lasers, which launch light power of 3.5 mW coupled into a single-mode fiber, are also presented.
引用
收藏
页码:787 / 794
页数:8
相关论文
共 41 条
[1]   GaAsSb:: A novel material for 1.3μm VCSELs [J].
Anan, T ;
Nishi, K ;
Sugou, S ;
Yamada, M ;
Tokutome, K ;
Gomyo, A .
ELECTRONICS LETTERS, 1998, 34 (22) :2127-2129
[2]   Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys [J].
Bellaiche, L ;
Wei, SH ;
Zunger, A .
PHYSICAL REVIEW B, 1997, 56 (16) :10233-10240
[3]   Static and dynamic characteristics of 1.29-μm GaInNAs ridge-waveguide laser diodes [J].
Borchert, B ;
Egorov, AY ;
Illek, S ;
Riechert, H .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (06) :597-599
[4]   Mechanism for low-temperature photoluminescence in GaNAs/GaAs structures grown by molecular-beam epitaxy [J].
Buyanova, IA ;
Chen, WM ;
Pozina, G ;
Bergman, JP ;
Monemar, B ;
Xin, HP ;
Tu, CW .
APPLIED PHYSICS LETTERS, 1999, 75 (04) :501-503
[5]   The effects of interdiffusion on the subbands in GaxIn1-xN0.04As0.96/GaAs quantum well for 1.3 and 1.55 μm operation wavelengths [J].
Chan, MCY ;
Surya, C ;
Wai, PKA .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (01) :197-201
[6]   1.2-μm GaAsP/InGaAs strain compensated single-quantum-well diode laser on GaAs using metal-organic chemical vapor deposition [J].
Choi, WJ ;
Dapkus, D ;
Jewell, JJ .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (12) :1572-1574
[7]   Room temperature continuous wave InGaAsN quantum well vertical-cavity lasers emitting at 1.3 μm [J].
Choquette, KD ;
Klem, JF ;
Fischer, AJ ;
Blum, O ;
Allerman, AA ;
Fritz, IJ ;
Kurtz, SR ;
Breiland, WG ;
Sieg, R ;
Geib, KM ;
Scott, JW ;
Naone, RL .
ELECTRONICS LETTERS, 2000, 36 (16) :1388-1390
[8]   Ultrafast (GaIn)(NAs)/GaAs vertical-cavity surface-emitting laser for the 1.3 μm wavelength regime [J].
Ellmers, C ;
Höhnsdorf, F ;
Koch, J ;
Agert, C ;
Leu, S ;
Karaiskaj, D ;
Hofmann, M ;
Stolz, W ;
Rühle, WW .
APPLIED PHYSICS LETTERS, 1999, 74 (16) :2271-2273
[9]   1.3 μm room-temperature GaAs-based quantum-dot laser [J].
Huffaker, DL ;
Park, G ;
Zou, Z ;
Shchekin, OB ;
Deppe, DG .
APPLIED PHYSICS LETTERS, 1998, 73 (18) :2564-2566
[10]   Low threshold current density operation of GaInNAs quantum well lasers grown by metalorganic chemical vapour deposition [J].
Kawaguchi, M ;
Gouardes, E ;
Schlenker, D ;
Kondo, T ;
Miyamoto, T ;
Koyama, F ;
Iga, K .
ELECTRONICS LETTERS, 2000, 36 (21) :1776-1777