The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes

被引:231
作者
Cho, Yung-Da [1 ]
Fey, George Ting-Kuo [1 ]
Kao, Hsien-Ming [2 ]
机构
[1] Natl Cent Univ, Dept Chem & Mat Engn, Chungli 32054, Taiwan
[2] Natl Cent Univ, Dept Chem, Chungli 32054, Taiwan
关键词
LiFePO4; Carbon coating; Coating thickness; Vapor deposition technique; Cathode; Li-ion batteries; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PROPERTIES; PHOSPHO-OLIVINES; IRON PHOSPHATES; PERFORMANCE; ELECTRODES; ROUTE; TEMPERATURE; BEHAVIOR; STORAGE;
D O I
10.1016/j.jpowsour.2008.09.053
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two types of carbon source and precursor mixing pellets were employed simultaneously to prepare the LiFePO4/C composite materials: Type I using the LiFePO4 precursor with 20 wt.% polystyrene (PS) as a primary carbon source, and Type II using the LiFePO4 precursor with 50 wt.% malonic acid as a secondary carbon vapor source. During final sintering, a Type I pellet was placed down-stream and Type II precursor pellet(s) was(were) placed upstream next to a Type I precursor pellet in a quartz-tube furnace. The carbon-coated product of the sintered Type I precursor pellet was obtained by using both PS and malonic acid as carbon sources. When two Type II pellets were used as a carbon vapor source (defined as Product-2), a more uniform film between 4 and 8 nm was formed, as shown in the TEM images. In the absence of a secondary carbon source (defined as Product-0), the discharge capacity of Product-0 was 137 mAh g(-1) with 100 cycles at a 0.2C-rate, but Product-2 demonstrated a high capacity of 151 mAh g(-1) with 400 cycles. Our results indicate that electrochemical properties of LiFePO4 are correlated to the amount of carbon and its coating thickness and uniformity. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:256 / 262
页数:7
相关论文
共 43 条
[1]   Ti-, Al-, and Cu-doping induced gap states in LiFePO4 [J].
Abbate, M ;
Lala, SM ;
Montoro, LA ;
Rosolen, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (06) :A288-A290
[2]   Anisotropy of electronic and ionic transport in LiFePO4 single crystals [J].
Amin, Ruhul ;
Balaya, Palani ;
Maier, Joachim .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (01) :A13-A16
[3]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[4]   The source of first-cycle capacity loss in LiFePO4 [J].
Andersson, AS ;
Thomas, JO .
JOURNAL OF POWER SOURCES, 2001, 97-8 :498-502
[5]   Lithium extraction/insertion in LiFePO4:: an X-ray diffraction and Mossbauer spectroscopy study [J].
Andersson, AS ;
Kalska, B ;
Häggström, L ;
Thomas, JO .
SOLID STATE IONICS, 2000, 130 (1-2) :41-52
[6]   Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique [J].
Arnold, G ;
Garche, J ;
Hemmer, R ;
Ströbele, S ;
Vogler, C ;
Wohlfahrt-Mehrens, A .
JOURNAL OF POWER SOURCES, 2003, 119 :247-251
[7]   Lithium iron(II) phospho-olivines prepared by a novel carbothermal reduction method [J].
Barker, J ;
Saidi, MY ;
Swoyer, JL .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2003, 6 (03) :A53-A55
[8]   Raman and FTIR spectroscopic study of LixFePO4 (0 ≤ x ≤ 1) [J].
Burba, CM ;
Frech, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) :A1032-A1038
[9]   Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J].
Chen, ZH ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1184-A1189
[10]   Physical and electrochemical properties of La-doped LiFePO4/C composites as cathode materials for lithium-ion batteries [J].
Cho, Yung-Da ;
Fey, George Ting-Kuo ;
Kao, Hsien-Ming .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (7-8) :815-823