Spectral Unmixing: Analysis of Performance in the Olfactory Bulb In Vivo

被引:26
作者
Ducros, Mathieu [1 ,2 ,3 ]
Moreaux, Laurent [1 ,2 ,3 ]
Bradley, Jonathan [3 ,4 ]
Tiret, Pascale [1 ,2 ,3 ]
Griesbeck, Oliver [5 ]
Charpak, Serge [1 ,2 ,3 ]
机构
[1] INSERM, U603, Paris, France
[2] CNRS, UMR 8154, Paris, France
[3] Univ Paris 05, Paris, France
[4] CNRS, UMR 8118, Paris, France
[5] Max Planck Inst Neurobiol, Martinsried, Germany
来源
PLOS ONE | 2009年 / 4卷 / 02期
关键词
EXCITATION CROSS-SECTIONS; FLUORESCENT PROTEINS; MICROSCOPY; ABSORPTION; EXPRESSION; VARIANTS; CFP; PH;
D O I
10.1371/journal.pone.0004418
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The generation of transgenic mice expressing combinations of fluorescent proteins has greatly aided the reporting of activity and identification of specific neuronal populations. Methods capable of separating multiple overlapping fluorescence emission spectra, deep in the living brain, with high sensitivity and temporal resolution are therefore required. Here, we investigate to what extent spectral unmixing addresses these issues. Methodology/Principal Findings: Using fluorescence resonance energy transfer (FRET)-based reporters, and two-photon laser scanning microscopy with synchronous multichannel detection, we report that spectral unmixing consistently improved FRET signal amplitude, both in vitro and in vivo. Our approach allows us to detect odor-evoked FRET transients 180-250 mm deep in the brain, the first demonstration of in vivo spectral imaging and unmixing of FRET signals at depths greater than a few tens of micrometer. Furthermore, we determine the reporter efficiency threshold for which FRET detection is improved by spectral unmixing. Conclusions/Significance: Our method allows the detection of small spectral variations in depth in the living brain, which is essential for imaging efficiently transgenic animals expressing combination of multiple fluorescent proteins.
引用
收藏
页数:10
相关论文
共 49 条
[1]   Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm [J].
Albota, MA ;
Xu, C ;
Webb, WW .
APPLIED OPTICS, 1998, 37 (31) :7352-7356
[2]   Single-photon counting multicolor multiphoton fluorescence microscope [J].
Buehler, C ;
Kim, KH ;
Greuter, U ;
Schlumpf, N ;
So, PTC .
JOURNAL OF FLUORESCENCE, 2005, 15 (01) :41-51
[3]   Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging [J].
Centonze, VE ;
White, JG .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2015-2024
[4]   The relationship between blood flow and neuronal activity in the rodent olfactory bulb [J].
Chaigneau, Emmanuelle ;
Tiret, Pascale ;
Lecoq, Jerome ;
Ducros, Mathieu ;
Knopfel, Thomas ;
Charpak, Serge .
JOURNAL OF NEUROSCIENCE, 2007, 27 (24) :6452-6460
[5]   Odor-evoked calcium signals in dendrites of rat mitral cells [J].
Charpak, S ;
Mertz, J ;
Beaurepaire, E ;
Moreaux, L ;
Delaney, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (03) :1230-1234
[6]  
CHEONG WF, 1995, OPTICAL THERMAL RESP, P8
[7]  
DAVIES LM, 2007, P SPIE, V6443
[8]   Activation of cerebellar parallel fibers monitored in transgenic mice expressing a fluorescent Ca2+ indicator protein [J].
Díez-García, J ;
Matsushita, S ;
Mutoh, H ;
Nakai, J ;
Ohkura, M ;
Yokoyama, J ;
Dimitrov, D ;
Knöpfel, T .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2005, 22 (03) :627-635
[9]   Application of spectral imaging microscopy in cytomics and fluorescence resonance energy transfer (FRET) analysis [J].
Ecker, RC ;
de Martin, R ;
Steiner, GE ;
Schmid, JA .
CYTOMETRY PART A, 2004, 59A (02) :172-181
[10]   Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons [J].
Fan, GY ;
Fujisaki, H ;
Miyawaki, A ;
Tsay, RK ;
Tsien, RY ;
Ellisman, MH .
BIOPHYSICAL JOURNAL, 1999, 76 (05) :2412-2420