Three-Dimensional Self-Supported Metal Oxides for Advanced Energy Storage

被引:462
作者
Ellis, Brian L. [1 ]
Knauth, Philippe [2 ,3 ,4 ]
Djenizian, Thierry [1 ,2 ,3 ,4 ]
机构
[1] Aix Marseille Univ, Lab LP3, CNRS, UMR 7341, F-13288 Marseille, France
[2] Aix Marseille Univ, MADIREL Lab, CNRS, UMR 7246, F-13397 Marseille, France
[3] FR CNRS 3104, Alistore Eri, France
[4] FR CNRS 3459, Paris, France
关键词
LITHIUM-ION-BATTERIES; TIO2 NANOTUBE ARRAYS; ATOMIC LAYER DEPOSITION; ULTRAHIGH SPECIFIC CAPACITANCE; NEGATIVE-ELECTRODE MATERIALS; HIGH-PERFORMANCE ANODE; THIN-FILM ELECTRODES; CO3O4 NANOROD ARRAYS; X-RAY-DIFFRACTION; HIGH-ASPECT-RATIO;
D O I
10.1002/adma.201306126
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The miniaturization of power sources aimed at integration into micro- and nano-electronic devices is a big challenge. To ensure the future development of fully autonomous on-board systems, electrodes based on self-supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self-supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li-ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self-supported electrodes fabricated using template, lithography, anodization and self-organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability.
引用
收藏
页码:3368 / 3397
页数:30
相关论文
共 258 条
  • [11] New class of carbon-nanotube aerogel electrodes for electrochemical power sources
    Bordjiba, Tarik
    Mohamedi, Mohamed
    Dao, Le H.
    [J]. ADVANCED MATERIALS, 2008, 20 (04) : 815 - +
  • [12] Impact of nanosizing on lithiated rutile TiO2
    Borghols, Wouter J. H.
    Wagemaker, Marnix
    Lafont, Ugo
    Kelder, Erik M.
    Mulder, Fokko M.
    [J]. CHEMISTRY OF MATERIALS, 2008, 20 (09) : 2949 - 2955
  • [13] Nanomaterials for rechargeable lithium batteries
    Bruce, Peter G.
    Scrosati, Bruno
    Tarascon, Jean-Marie
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) : 2930 - 2946
  • [14] A perspective: carbon nanotube macro-films for energy storage
    Cao, Zeyuan
    Wei, Bingqing
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (11) : 3183 - 3201
  • [15] High-performance lithium battery anodes using silicon nanowires
    Chan, Candace K.
    Peng, Hailin
    Liu, Gao
    McIlwrath, Kevin
    Zhang, Xiao Feng
    Huggins, Robert A.
    Cui, Yi
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (01) : 31 - 35
  • [16] Self-Supported Three-Dimensional Nanoelectrodes for Microbattery Applications
    Cheah, Seng Klan
    Perre, Emilie
    Rooth, Marten
    Fondell, Mattis
    Harsta, Anders
    Nyholm, Leif
    Boman, Mats
    Gustafsson, Torbjorn
    Lu, Jun
    Simon, Patrice
    Edstrom, Kristina
    [J]. NANO LETTERS, 2009, 9 (09) : 3230 - 3233
  • [17] α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications
    Chen, J
    Xu, LN
    Li, WY
    Gou, XL
    [J]. ADVANCED MATERIALS, 2005, 17 (05) : 582 - +
  • [18] Cathodic ALD V2O5 thin films for high-rate electrochemical energy storage
    Chen, Xinyi
    Pomerantseva, Ekaterina
    Gregorczyk, Keith
    Ghodssi, Reza
    Rubloff, Gary
    [J]. RSC ADVANCES, 2013, 3 (13): : 4294 - 4302
  • [19] Ozone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage
    Chen, Xinyi
    Pomerantseva, Ekaterina
    Banerjee, Parag
    Gregorczyk, Keith
    Ghodssi, Reza
    Rubloff, Gary
    [J]. CHEMISTRY OF MATERIALS, 2012, 24 (07) : 1255 - 1261
  • [20] 3D morphological evolution of Li-ion battery negative electrode LiVO2 during oxidation using X-ray nano-tomography
    Chen-Wiegart, Yu-chen Karen
    Shearing, Paul
    Yuan, Qingxi
    Tkachuk, Andrei
    Wang, Jun
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2012, 21 : 58 - 61