Surface plasmon photodetectors and their applications

被引:202
作者
Berini, Pierre [1 ,2 ]
机构
[1] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON K1N 6N5, Canada
[2] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
关键词
surface; plasmon; photodetector; performance; enhancement; PHOTOELECTRIC CONVERSION EFFICIENCY; ENHANCED QUANTUM EFFICIENCY; PHTHALOCYANINE SOLAR-CELL; GUIDE SCHOTTKY DETECTORS; WAVE-GUIDE; INTERNAL PHOTOEMISSION; ELECTRICAL DETECTION; OPTICAL-ABSORPTION; INFRARED PHOTODETECTORS; GAAS;
D O I
10.1002/lpor.201300019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Surface plasmon photodetectors are of vigorous current interest. Such detectors typically combine a metallic structure that supports surface plasmons with a photodetection structure based on internal photoemission or electron-hole pair creation. Detector architectures are highly varied, involving surface plasmons on planar metal waveguides, on metal gratings, on nano-particles, -islands, or -antennas, or involving plasmon-mediated transmission through one or many sub-wavelength holes in a metal film. Properties inherent to surface plasmons, such as sub-wavelength confinement and their ability to resonate on tiny metallic structures, are exploited to convey useful characteristics to detectors in addressing applications such as low-noise high-speed detection, single-plasmon detection, near- and mid-infrared imaging, photovoltaic solar energy conversion, and (bio)chemical sensing. The operating principles behind surface plasmon detectors are reviewed, the literature on the topic is surveyed, and avenues that appear promising are highlighted.
引用
收藏
页码:197 / 220
页数:24
相关论文
共 175 条
[1]   Optical frequency signal detection through surface plasmon polaritons [J].
Aihara, Takuma ;
Nakagawa, Kyohei ;
Fukuhara, Masashi ;
Yu, Yen Ling ;
Yamaguchi, Kenzo ;
Fukuda, Mitsuo .
APPLIED PHYSICS LETTERS, 2011, 99 (04)
[2]   Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon [J].
Akbari, Ali ;
Olivieri, Anthony ;
Berini, Pierre .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (03)
[3]   Surface plasmon waveguide Schottky detector [J].
Akbari, Ali ;
Tait, R. Niall ;
Berini, Pierre .
OPTICS EXPRESS, 2010, 18 (08) :8505-8514
[4]   Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide [J].
Akbari, Ali ;
Berini, Pierre .
APPLIED PHYSICS LETTERS, 2009, 95 (02)
[5]   Schottky-contact plasmonic dipole rectenna concept for biosensing [J].
Alavirad, Mohammad ;
Mousavi, Saba Siadat ;
Roy, Langis ;
Berini, Pierre .
OPTICS EXPRESS, 2013, 21 (04) :4328-4347
[6]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[7]  
Barnard ES, 2011, NAT NANOTECHNOL, V6, P588, DOI [10.1038/nnano.2011.131, 10.1038/NNANO.2011.131]
[8]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[9]   Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings [J].
Barnes, WL ;
Preist, TW ;
Kitson, SC ;
Sambles, JR .
PHYSICAL REVIEW B, 1996, 54 (09) :6227-6244
[10]   Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells [J].
Basch, A. ;
Beck, F. J. ;
Soederstroem, T. ;
Varlamov, S. ;
Catchpole, K. R. .
APPLIED PHYSICS LETTERS, 2012, 100 (24)